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Chapter 7, Solution 66.

Oxygen gas is compressed from a specified initial state to a specified final state. The entropy change of oxygen during this process is to be determined for the case of constant specific heats.  

Assumptions At specified conditions, oxygen can be treated as an ideal gas.

Properties The gas constant and molar mass of oxygen are R = 0.2598 kJ/kg.K and M = 32 kg/kmol (Table A-1).  

Analysis The constant volume specific heat of oxygen at the average temperature is (Table A-2)
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Chapter 7, Solution 67.

An insulated tank contains  CO2 gas at a specified pressure and volume. A paddle-wheel in the tank stirs the gas, and the pressure and temperature of CO2 rises. The entropy change of CO2 during this process is to be determined using constant specific heats.   

Assumptions At specified conditions, CO2 can be treated as an ideal gas with constant specific heats at room temperature.

Properties The specific heat of CO2 is cv = 0.657 kJ/kg.K (Table A-2).  

Analysis Using the ideal gas relation, the entropy change is determined to be
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Chapter 7, Solution 73.

Air is compressed steadily by a 5-kW compressor from one specified state to another specified state.  The rate of entropy change of air is to be determined.  

Assumptions At specified conditions, air can be treated as an ideal gas. 2 Air has variable specific heats.

Properties The gas constant of air is R = 0.287 kJ/kg.K  (Table A-1).  

Analysis From the air table (Table A-17),
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Then the rate of entropy change of air becomes
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Chapter 7, Solution 75.

Air is compressed in a piston-cylinder device in a reversible and adiabatic manner. The final temperature and the work are to be determined for the cases of constant and variable specific heats.

Assumptions 1 At specified conditions, air can be treated as an ideal gas. 2 The process is given to be reversible and adiabatic, and thus isentropic. Therefore, isentropic relations of ideal gases apply.

Properties The gas constant of air is R = 0.287 kJ/kg.K  (Table A-1).  The specific heat ratio of air at low to moderately high temperatures is k = 1.4 (Table A-2).

Analysis (a) Assuming constant specific heats, the ideal gas isentropic relations give
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Then,
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We take the air in the cylinder as the system. The energy balance for this stationary closed system can be expressed as
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Thus,
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(b)  Assuming variable specific heats, the final temperature can be determined using the relative pressure data (Table A-17),

and
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Then the work input becomes
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Chapter 7, Solution 77.

Helium gas is compressed in a piston-cylinder device in a reversible and adiabatic manner. The final temperature and the work are to be determined for the cases of the process taking place in a piston-cylinder device and a steady-flow compressor.

Assumptions 1 Helium is an ideal gas with constant specific heats. 2 The process is given to be reversible and adiabatic, and thus isentropic. Therefore, isentropic relations of ideal gases apply.

Properties The specific heats and the specific heat ratio of helium are cv = 3.1156 kJ/kg.K, cp = 5.1926 kJ/kg.K,  and  k = 1.667 (Table A-2).

Analysis  (a) From the ideal gas isentropic relations,  
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(a) We take the air in the cylinder as the system. The energy balance for this stationary closed system can be expressed as
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Thus,  
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(b) If the process takes place in a steady-flow device, the final temperature will remain the same but the work done should be determined from an energy balance on this steady-flow device,
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Thus, 
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Chapter 7, Solution 80E.

Air is accelerated in an adiabatic nozzle. Disregarding irreversibilities, the exit velocity of air is to be determined.

Assumptions 1 Air is an ideal gas with variable specific heats. 2 The process is given to be reversible and adiabatic, and thus isentropic. Therefore, isentropic relations of ideal gases apply. 2 The nozzle operates steadily.

Analysis Assuming variable specific heats, the inlet and exit properties are determined to be

and
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We take the nozzle as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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Therefore, 
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Chapter 7, Solution 81.

Air is accelerated in an nozzle, and some heat is lost in the process. The exit temperature of air and the total entropy change during the process are to be determined. 

Assumptions 1 Air is an ideal gas with variable specific heats. 2 The nozzle operates steadily.

Analysis (a) Assuming variable specific heats, the inlet properties are determined to be,
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    (Table A-17)

We take the nozzle as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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Therefore,
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At this h2 value we read, from Table A-17,
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(b) The total entropy change is the sum of the entropy changes of the air and of the surroundings, and is determined from

where
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Thus,
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