Chapter 7, Problem 32.

A $0.5-\mathrm{m}^{3}$ rigid tank contains refrigerant-134a initially at 200 kPa and 40 percent quality. Heat is transferred now to the refrigerant from a source at $35^{\circ} \mathrm{C}$ until the pressure rises to 400 kPa . Determine (a) the entropy change of the refrigerant, (b) the entropy change of the heat source, and (c) the total entropy change for this process.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

Chapter 7, Problem 34.

A well-insulated rigid tank contains 2 kg of a saturated liquid-vapor mixture of water at 100 kPa . Initially, three-quarters of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized. Determine the entropy change of the steam during this process.

Figure P7-34

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
(C) 2006 The McGraw-Hill Companies.

Chapter 7, Problem 35.

A rigid tank is divided into two equal parts by a partition. One part of the tank contains 1.5 kg of compressed liquid water at 300 kPa and $60^{\circ} \mathrm{C}$ while the other part is evacuated. The partition is now removed, and the water expands to fill the entire tank. Determine the entropy change of water during this process, if the final pressure in the tank is 15 kPa .

1.5 kg			
compressed			
liquid		\quad Vacuum	300 kPa
:---:			
$60^{\circ} \mathrm{C}$			

Figure P7-35

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
(C) 2006 The McGraw-Hill Companies.

Chapter 7, Problem 38.

An insulated piston-cylinder device contains 5 L of saturated liquid water at a constant pressure of 150 kPa . An electric resistance heater inside the cylinder is now turned on, and 2200 kJ of energy is transferred to the steam. Determine the entropy change of the water during this process.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an "E" are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

Chapter 7, Problem 41.

Refrigerant-134a enters an adiabatic compressor as saturated vapor at 160 kPa at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$ and is compressed to a pressure of 900 kPa . Determine the minimum power that must be supplied to the compressor.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

Chapter 7, Problem 53.

A $50-\mathrm{kg}$ copper block initially at $80^{\circ} \mathrm{C}$ is dropped into an insulated tank that contains 120 L of water at $25^{\circ} \mathrm{C}$. Determine the final equilibrium temperature and the total entropy change for this process.

Figure P7-53

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
(C) 2006 The McGraw-Hill Companies.

Chapter 7, Problem 55.

A $20-\mathrm{kg}$ aluminum block initially at $200^{\circ} \mathrm{C}$ is brought into contact with a $20-\mathrm{kg}$ block of iron at $100^{\circ} \mathrm{C}$ in an insulated enclosure. Determine the final equilibrium temperature and the total entropy change for this process.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an "E" are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
(C) 2006 The McGraw-Hill Companies.

