Chapter 6, Problem 80.

A geothermal power plant uses geothermal water extracted at $160^{\circ} \mathrm{C}$ at a rate of $440 \mathrm{~kg} / \mathrm{s}$ as the heat source and produces 22 MW of net power. If the environment temperature is $25^{\circ} \mathrm{C}$, determine (a) the actual thermal efficiency, (b) the maximum possible thermal efficiency, and (c) the actual rate of heat rejection from this power plant.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an "E" are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

Chapter 6, Problem 87.

A refrigerator is to remove heat from the cooled space at a rate of $300 \mathrm{~kJ} / \mathrm{min}$ to maintain its temperature at $-8^{\circ} \mathrm{C}$. If the air surrounding the refrigerator is at $25^{\circ} \mathrm{C}$, determine the minimum power input required for this refrigerator.

Figure P6-87

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the 回 are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
(C) 2006 The McGraw-Hill Companies.

Chapter 6, Problem 95.

A heat pump is used to maintain a house at $22^{\circ} \mathrm{C}$ by extracting heat from the outside air on a day when the outside air temperature is $2^{\circ} \mathrm{C}$. The house is estimated to lose heat at a rate of $110,000 \mathrm{~kJ} / \mathrm{h}$, and the heat pump consumes 5 kW of electric power when running. Is this heat pump powerful enough to do the job?
$110,000 \mathrm{~kJ} / \mathrm{h}$

Figure P6-95

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an "E" are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
(C) 2006 The McGraw-Hill Companies.

Chapter 6, Problem 97.

The performance of a heat pump degrades (i.e., its COP decreases) as the temperature of the heat source decreases. This makes using heat pumps at locations with severe weather conditions unattractive. Consider a house that is heated and maintained at $20^{\circ} \mathrm{C}$ by a heat pump during the winter. What is the maximum COP for this heat pump if heat is extracted from the outdoor air at (a) $10^{\circ} \mathrm{C}$, (b) $-5^{\circ} \mathrm{C}$, and (c) $-30^{\circ} \mathrm{C}$?

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an "E" are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

