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Chapter 5, Solution 30.

Air is accelerated in a nozzle from 30 m/s to 180 m/s. The mass flow rate, the exit temperature, and the exit area of the nozzle are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Air is an ideal gas with constant specific heats. 3 Potential energy changes are negligible. 4 The device is adiabatic and thus heat transfer is negligible. 5 There are no work interactions.
Properties The gas constant of air is 0.287 kPa.m3/kg.K (Table A-1). The specific heat of air at the anticipated average temperature of 450 K is cp = 1.02 kJ/kg.(C (Table A-2).

Analysis (a) There is only one inlet and one exit, and thus 
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(b) We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Substituting, 
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It yields

T2 = 184.6(C
(c)  The specific volume of air at the nozzle exit is
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 → A2 = 0.00387 m2 = 38.7 cm2

Chapter 5, Solution 41.

Nitrogen is decelerated in a diffuser from 200 m/s to a lower velocity. The exit velocity of nitrogen and the ratio of the inlet-to-exit area are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Nitrogen is an ideal gas with variable specific heats. 3 Potential energy changes are negligible. 4 The device is adiabatic and thus heat transfer is negligible. 5 There are no work interactions.
Properties The molar mass of nitrogen is M = 28 kg/kmol (Table A-1). The enthalpies are (Table A-18)
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Analysis  (a) There is only one inlet and one exit, and thus 
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. We take diffuser as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Substituting,
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It yields



       V2 = 93.0 m/s
(b)  The ratio of the inlet to exit area is determined from the conservation of mass relation,

or,
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Chapter 5, Solution 49.

Steam expands in a turbine. The change in kinetic energy, the power output, and the turbine inlet area are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.
Properties From the steam tables (Tables A-4 through 6)
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and
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 Analysis (a) The change in kinetic energy is determined from
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(b) There is only one inlet and one exit, and thus 
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. We take the turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Then the power output of the turbine is determined by substitution to be
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(c)  The inlet area of the turbine is determined from the mass flow rate relation,
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Chapter 5, Solution 54.

Argon gas expands in a turbine. The exit temperature of the argon for a power output of 250 kW is to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible. 4 Argon is an ideal gas with constant specific heats.
Properties The gas constant of Ar is R = 0.2081 kPa.m3/kg.K. The constant pressure specific heat of Ar is cp = 0.5203 kJ/kg·(C (Table A-2a)

Analysis There is only one inlet and one exit, and thus 
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. The inlet specific volume of argon and its mass flow rate are
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Thus,
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We take the turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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Substituting,  
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It yields

T2 = 267.3(C

Chapter 5, Solution 66.

Refrigerant-134a is throttled by a valve. The temperature drop of the refrigerant and specific volume after expansion are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 Heat transfer to or from the fluid is negligible. 4 There are no work interactions involved. 
Properties The inlet enthalpy of R-134a is, from the refrigerant tables (Tables A-11 through 13),
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Analysis There is only one inlet and one exit, and thus 
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. We take the throttling valve as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as
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since 
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Obviously hf <h2 <hg, thus the refrigerant exists as a saturated mixture at the exit state and thus T2 = Tsat = -15.60°C. Then the temperature drop becomes
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The quality at this state is determined from

Thus,
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Chapter 5, Solution 75.

A hot water stream is mixed with a cold water stream. For a specified mixture temperature, the mass flow rate of cold water is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The mixing chamber is well-insulated so that heat loss to the surroundings is negligible. 3 Changes in the kinetic and potential energies of fluid streams are negligible. 4 Fluid properties are constant. 5 There are no work interactions.
Properties Noting that T < Tsat @ 250 kPa = 127.41°C, the water in all three streams exists as a compressed liquid, which can be approximated as a saturated liquid at the given temperature.  Thus,



h1  (  hf @ 80(C  =
335.02 kJ/kg



h2  (  hf @ 20(C  =
  83.915 kJ/kg



h3  (  hf @ 42(C  =
175.90 kJ/kg

Analysis We take the mixing chamber as the system, which is a control volume. The mass and energy balances for this steady-flow system can be expressed in the rate form as

Mass balance:
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Energy balance:
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Combining the two relations and solving for 

 gives
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Substituting, the mass flow rate of cold water stream is determined to be 
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Chapter 5, Solution 81.

Refrigerant-134a is to be cooled by air in the condenser. For a specified volume flow rate of air, the mass flow rate of the refrigerant is to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 There are no work interactions. 4 Heat loss from the device to the surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. 5 Air is an ideal gas with constant specific heats at room temperature.
Properties The gas constant of air is 0.287 kPa.m3/kg.K (Table A-1). The constant pressure specific heat of air is cp = 1.005 kJ/kg·°C (Table A-2). The enthalpies of the R-134a at the inlet and the exit states are (Tables A-11 through A-13)
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Analysis The inlet specific volume and the mass flow rate of air are

and
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We take the entire heat exchanger as the system, which is a control volume. The mass and energy balances for this steady-flow system can be expressed in the rate form as

Mass balance ( for each fluid stream):
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Energy balance (for the entire heat exchanger):
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Combining the two,
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Solving for 

:
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Substituting,
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Chapter 5, Solution 88.

Water is heated in a heat exchanger by geothermal water. The rate of heat transfer to the water and the exit temperature of the geothermal water is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The heat exchanger is well-insulated so that heat loss to the surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold fluid. 3 Changes in the kinetic and potential energies of fluid streams are negligible. 4 Fluid properties are constant.
Properties The specific heats of water and geothermal fluid are given to be 4.18 and 4.31 kJ/kg.(C, respectively.

Analysis We take the cold water tubes as the system, which is a control volume. The energy balance for this steady-flow system can be expressed in the rate form as
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Then the rate of heat transfer to the cold water in the heat exchanger becomes
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Noting that heat transfer to the cold water is equal to the heat loss from the geothermal water, the outlet temperature of the geothermal water is determined from
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