Chapter 2. MathScript

2.1 What is MathScript

MathScript is math-oriented, text-based computing language to address tasks mathematic calculation:

- Most suitable for Mathematic calculation.
- Matrix based data type system.
- Can create a custom function.
- Same Syntax with Matlab.

2.2 Accessing the MathScript Window

Getting Start – Tools -- MathScript Window
2.3 MathScript Windows:

- Command window: for command line input
- Output Window: shows the resulting output
- Script Editor window: for loading, saving, editing, and running
- Variables window: shows variables, dimensions, and type
- Command History window: shows historical commands and scripts.

Example 1

Input \(a=1+2 \) in the Script Editor window, and run this code. Check each window.
2.4 View Data in a Variety Formats

2.4.1 View in Variable window

Input:
t=[0: 0.1: 10];
y=sin(t);

View y in the Graph or XY Graph format.
View y or t in the Numeric format
2.4.2 You can also use MathScript “Plot”

Input :

t=[0: 0.1: 10];
y=sin(t);
Plot(t, y);

Input :

t=[0: 0.1: 10];
X=cos(t);
y=sin(t);
Plot(x, y);
2.5 MathScript Help

In the Command Window input:

- help classes: provide a list of all MathScript classes of function.
- help function: provide help for a particular MathScript function.
A Summary of MathScript Functions

- Plot (2D and 3D)
- Digital Signal Processing (DSP)
- Curve Fitting & Interpolation
- Ordinary Differential Equation (ODE) Solves
- Polynomial Operations
- Linear Algebra
- Matrix Operations
- Vector Operations
- Probability and Statistics
- Optimization
- Basic Functions
- Advanced Functions
- Trigonometric Functions
- Boolean and Bit operations
- Dada Acquisition
- Others
2.6 Syntax

1. Scalar Operation

>> 16+3
>> x=16+3
>> x=16+3;
>> display(x);

>> 16-3
>> 16/3
>> 16*3
2. Creating Matrices and Vectors

Vector:

```
>> A=[1;2;3]
```

```
>> B=[1 -2 7]
```

```
>> B=[1,-2,7]
```

Matrix:

```
>> C=[-1 2 0; 4 10 -2; 1 0 6]
```

```
>> C=[-1,2,0;4,10,0;1,0,6]
```
3. Creating Vector

```matlab
>> t=1:10;
>> t=1:0.5:10
```

4. Access individual elements of a vector or matrix

```matlab
>> C=[-1 2 0;4 10 -2;1 0 6]
>> C(2,3)
>> F=C(2,3)
>> C(2,:)
>> C(:,3)
>> C([2 3], [1 2])
```
5. Calling Functions

>> help linspace

>> G=linspace(1,10,13)

>> Help abs
>> A=-3
>> B=abs(A)
6. Assigning data types to variables

```python
>>a=sin(3*pi/2)
>>a=‘temperature’
```

7. Using complex numbers

```python
>>a=2+3j
>>a=2+3i
>>b=3+4i
>>c=a+b
```
8. Matrix operations

```matlab
>> K = [-1 2 0; 4 10 -2; 1 0 6]
>> L = [1 0 0; 0 1 0; 0 0 1]
>> K + L
>> K * L
>> L .* K

>> a = [1 2; 3 4]
>> b = a^-1
>> c = a * b
```
9. Logical Express

```matlab
>> a = 2
>> b = 3
>> a == b
>> a ~= b
>> a = 2
>> b = 2
>> a == b
>> a ~= b
```

10. Adding comments

```matlab
>> % In this MathScript, the inputs are x and y
>> % and the output is Z
>> z = x + y % z is the addition of x and y
```
11. Control flow structure (For Script)

Case-Switch Syntax:

```
switch expression
  case expression
  statement, ..., statement
  ...
  otherwise
  statement, ..., statement
end
```

Script Example:

```
color = 'green';
switch color
  case 'green'
    disp('color is green');
  case 'red'
    disp('color is red');
  otherwise
    disp('color is neither green nor red')
end
```
For Loop Syntax:
for variable = expression
 statement1,

 statement,
end

Script Example:
A = 1
for X = 1:1:10
 A = A+1
end
If-Else Syntax:
for variable = expression
 statement1,

 statementn,
end

Script Example
A = 1
for X = 1:1:10
 A = A+1
end
If-Else Syntax:
if expression
 statement, ... , statement
elseif expression
 statement, ... , statement
else
 statement, ... , statement
end

Script Example:
b = 10;
if b == 1
 c = 3
else
 c = 4
end
While Loop Syntax:
while expression
 statement1

 statementn
end

Script Example:
A = 1
X = 1
while X<10,
 A = A+1,
 X = X+1,
end
MathScript Node is scripts node that can be used in VI as a node function. It is a text-base code.

MathScript can be found at:
Programming>>Structure palette
Or Mathematics>>Scripts & Formulas.

Figure 1. A MathScript Node.
Procedure to create a MathScript Node:

1) Place a MathScript Node on the block diagram
2) Right click the board to add input or output
3) Add the names of the variables.
Assignment 1

Write the following MathScript Node to generate, plot, and analyze a sequence of a random number.
Assignment 2

For \[A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 2 & 5 \\ 1 & 2 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 0 & 2 \\ 3 & 1 & 4 \\ 2 & 1 & 3 \end{bmatrix} \]

Write a Script code to calculate Matrix C:
\(C = A \times B, \quad E = A \times C, \) if \(d = 1; \)
\(C = A^{-1}, \quad E = A \times C, \) if \(d \) is not equal to 1;
Assignment 3

Open a new VI and place a MathScript Node on the block diagram. Create a numeric input on the MathScript Node frame and name it w. Generate the sine wave \(y=\sin(w*t) \) within the node, where \(t \) starting at \(t=0 \) and ending at \(t=10 \). Replace the frequency with the variable \(w \) an the input controlled from a from panel knob. Create 2 output on the MathScript Node frame name t and y, where t is the time history and y is the sine function associated with t. Plot the sine wave using an XY Graph.
Assignment 4

Construct a VI that solves the quadratic formula to find the real roots of the equation:

\[ax^2 + bx + c = 0 \]

Where \(x \) is the variable. \(a, b \) and \(c \) are constant. The real solution of the equation is given by

\[x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \]

Construct a Mathscript Formula Node to compute the above roots. There are should 2 outputs for the 2 roots, and 3 inputs for the constant \(a, b \) and \(c \). Once you finish the code, using this Mathscript Formula Node to create a SubVI.

Call your subVI in a new VI.