LabVIEW"

LabVIEW Fundamentals

August 2005 ¢ NATIONAL
374029A-01 "INSTRUMENTSM

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,

Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support Resources and Professional Services appendix.
To comment on National Instruments documentation, refer to the National Instruments Web site at ni . com/

info and enter the info code feedback.

© 2005 National Instruments Corporation. All rights reserved.

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

In regards to components used in USI (Xerces C++, ICU, and HDF5), the following copyrights apply. For a listing of the conditions and
disclaimers, refer to the USICopyrights.chm.

This product includes software developed by the Apache Software Foundation (http: //www.apache.org/).
Copyright © 1999 The Apache Software Foundation. All rights reserved.

Copyright © 1995-2003 International Business Machines Corporation and others. All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright © 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

Trademarks

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

FireWire® is the registered trademark of Apple Computer, Inc. Other product and company names mentioned herein are trademarks or trade
names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no
agency, partnership, or joint-venture relationship with National Instruments.

Patents

For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents. txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN

COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Contents

About This Manual
CONVEINTIONS ...eiivtiieeeiiieeitee ettt e eetteeeetteeeetteeeeteeeetaeeeeseeeetseeeeaesseessseeasssseesseeseesseeeanreeenns xiii
Chapter 1
Introduction to LabVIEW
LabVIEW Documentation RESOUICES.........ccccviiieiiiiiiiiiieiiieceiiee ettt 1-1
LADVIEW HeIP.....eiiiiiiiieeeeeet ettt st 1-1
Print DOCUMENESoiiiiiiieiii ettt ett e et eeae e e eaeeeeteaens 1-2
Readme DOCUMENLS.........cooiiiiieiie ettt e et eeae e e etea e 1-3
LabVIEW VI Templates, Example VIs, and TOOIScccevieveniiieniniiiceicceeeee 1-3
LabVIEW VI Templates.ccoceevuererriiiienieniienieeieieeceieeiee st 1-4
LabVIEW EXample VIScocoriiiiiiiiiiieieieeteeet et 1-4
LabVIEW Tools for DAQ Configuration (Windows).........cceceveeerervieneenennee 14
Chapter 2
Introduction to Virtual Instruments
Front Panel.........coovoiiiiiiniiiii ettt 2-2
BIOCK DIAZIAM ...ttt ettt sttt et 2-2
TEIMINALS ..ottt et s e 2-3
INOAES ..ttt et e et e e et e e e et e e e e teeeeaabeeestbeeesssaeesssaaeessseeessseessssaeessseaans 2-4
VTS ottt ettt e et e e et e e e eta e e etbeeestbeeessbaeesssaaeensbaeasseaessaeesnseaaans 2-4
SETUCHUTES ...vveeeiieeeitee et eeetteeetee e s e e eeteeeetaeeebeeeessseeessseasesesesssseessssaesnsseennens 2-5
Icon and ConneCtOr PAnecccuveeeiiiiiiiie ettt et e e e e e ineaen 2-5
Using and Customizing VIs and SUbVISccccoeviiiiiniiniiiniiiecieteeeeee e 2-6
Chapter 3
LabVIEW Environment
Getting Started WINAOWoooiiiiiiiiiieiee ettt ettt 3-1
CONLIOLS PAIETLEeieeeieeiie ettt et e et e e eate e eeateeeereaeens 3-1
FUNCHIONS PALETLEoocuviiieiiie ettt et e e e e e eate e e ate e e eaee e eaeaeas 3-2
Navigating the Controls and Functions Palettesccccoeoeririininienenicieiieeeeee, 3-2
TOOIS PALELLEooeviieeeiie ettt ettt e e et e e eeaae e e eateeeereeeeeaaeeeeaenaan 3-3
Menus and TOOIDATS............coouiiieiieeeeie ettt et et eeete e e et e e eeanaaen 34
IMLEIIUS ..ttt ettt e e ettt e e e et e e e e etbe e e e e e nabaaeeeeenasaaeaeeeesssseaeseesesnneeaanns 34
SHhOItCUt MIEINUSevviiieeeeiiiieee ettt e e e e eaavaeee e 3-4
VI TOOIDAT ..ottt ettt eete e eeaeeeeteaens 3-5
Project Explorer Window ToolIbars.........ccccoevererieiienienienieninie e 3-5

© National Instruments Corporation v LabVIEW Fundamentals

Contents

Context Help WINAOWoouiiiiiiiiiiieieeete ettt ettt 3-5
Project EXplorer WINAOWcoocuiiiiiiiiinieiit ittt sttt et 3-6
NaVIGAtion WINAOW....c..ceiiiiiiiiiieiiiiieeiee sttt ettt et ettt e steesbtesat e s beesaeesabes 3-6
Customizing Your Work ENvVironmentcoceeeeerieeniieniienieniieeniienieeieeseeesee e 3-7
Customizing the Controls and Functions Palettes..........c.cccooveevierieenieeneeennne. 3-7
Setting Work Environment OPtions..........cccevveereerrieenieenieenienieenieesieeneesanens 3-7

Chapter 4
Building the Front Panel

Front Panel Controls and INAiCatorscccvvieeeiieiiieeeciie ettt eree e 4-1
Styles of Controls and INdiCatorScccueeveerieeriienieenieeie e 4-2
Modern and Classic Controls and Indicators...........c.cccccvvveevveennnnenn. 4-2
System Controls and Indicatorsccceecveerierneeniennieenieeieeeee e 4-2
Numeric Displays, Slides, Scroll Bars, Knobs, Dials, and Time Stamps........ 4-2
Numeric Controls and Indicators..........cccceeeeeeevieeeiieeeeiieeeiee e 4-3
Slide Controls and INiCatorscccccecveeererieeeiiieeeiiee e eeee e 4-3
Scroll Bar Controls and Indicatorsccccoeeceeerieeeeieeesiieeeniiee s 4-4
Rotary Controls and Indicators..........ccccvevveevieenieinieensienieenieeeeane. 4-4
Time Stamp Control and Indicatorcceecveeeiievvieeneeniiniieneeenne. 4-4
Graphs and ChartScoeeeeriierieriiieiieeieeee ettt sttt saeesaeeas 4-5
Buttons, Switches, and Lights.........ccoceeviiiiiiiiiniiiiiiieee e 4-5
Radio Buttons CONLIOIScccvieeeiieeiiieeeieeesiieeeeieeeeereeesvreeeeaeeas 4-5
Text Entry Boxes, Labels, and Path Displays..........ccceeeeviiineeniennienienieee, 4-6
String Controls and IndicatorsS..........ceecvevveenierrieenienieeieeieeeee e 4-6
Combo BOX CONIOIScccuveieeiiieciieeciieeeiee ettt eee e 4-6
Path Controls and Indicators..........cccceeveeeeeriieenieeeciee e 4-7
Array, Matrix, and Cluster Controls and Indicators...........ccoeceevvevierneeneennne. 4-7
Listboxes, Tree Controls, and Tables..........c.covvviviiiiiiiiiiiiiiiiieeieeeeeeeeeeeen, 4-7
LAStDOXES ...uvtieiiieeciite ettt ettt ettt e et e et e e et e e esaae e e eraeeeseseeesnreasaereaas 4-7
Tree CONIOLSeeiiiiieciiieciieee ettt e et e e tae e e eev e e eeraeesesaeeas 4-7
TaADIES....eieeeeieeeiiee ettt ettt et e et e e e a e e e et e e e etb e e enaaeeeraaaas 4-8
Ring and Enumerated Type Controls and Indicatorscc.cceevveerverveeneennne. 4-8
RiNG CONLIOIS...c..uiiiiiiiiiiiiiiieiie et 4-8
Enumerated Type CONtrolS.......cocceeeveerieriiienienieesieeiesieeiee e 4-8
Container CONLIOLSccuviieeiiieeeiiee et ee ettt e bt e e eaee e s teeeesreeesesaeeseseeaans 4-9
Tab CONLIOLSvveeieiiiieiiiecitee et te e e e et e et e e eer e e e ebaeesaeaeas 4-9
Subpanel CoNtIOlS.......eevuieriieriieriieieerieeiee et 4-9
I/0 Name Controls and INdiCatorscccveeeeiieeriiieesiieeeeieeeeseeeeeveeesveeens 4-10
Waveform COntrol.........c.eceevieeeciieeiiie et e 4-10
Digital Waveform Control...........cccevieeieenieniieenieeneenie e 4-10
Digital Data CONtIolcoeueriiiiiiiieenie ettt 4-11
References to Objects or APPliCAtioNS..........evcveeveiriieriiiniienieeie et 4-11
NET and ActiveX Controls (Windows).......ccc.ceeeeeiureeeeeriirreeeeeecireeeeeeevnenee. 4-12

LabVIEW Fundamentals vi ni.com

Contents

Configuring Front Panel ODbJECtScceeveeriiiriiinieiiiiierieeee e 4-12
Showing and Hiding Optional Elementsc.cccovceervieinieniinnienieenieenecenn 4-13
Changing Controls to Indicators and Indicators to Controls..........c..ccccoueeeen. 4-13
Replacing Front Panel Objectscccueeveeriiiiiiiniiiiiienieeeie ettt 4-13

Configuring the Front Panelccoccooviiiiiiiiiiniiiiiieececeee e 4-13
COLOTING ODBJECLS...eeuviiireeiiieiieeeerte ettt ettt ettt ettt et steesaaesaees 4-14
Aligning and Distributing ODbJECctS.......cecerreeriiiriiiiniierieenie sttt 4-14
Grouping and Locking ObJECESccueeveeriiriiienieiiieneeeie ettt 4-14
RESIZING ODJECLS ..ottt ettt st ettt st saes 4-15
Adding Space to the Front Panel without Resizing the Window 4-15

LaDEIIIIE .ttt ettt ettt st ettt b et et 4-16

TEXt CHATACIETISTICS ..eeuveuvietetieitieieeteettete sttt sttt st eb et e st e s b et e sbt et sbeebesbeenaesaeas 4-16

Designing User INTerfaces.ceevirieriiieniiiienieeieseete ettt 4-17
Using Front Panel Controls and Indicatorscocceveveevieninnienenncneeenee 4-17
Designing Dialog BOXES.....cccceviiiiiiiniiiieiesiiesieeteieeeeeete e 4-17

Chapter 5
Building the Block Diagram

BloCK DIagram ODBJECTS.......eeviirieriiiniieeiieeiterieesiee sttt ettt et st ebeebeesbeesaaesaees 5-1
Block Diagram Terminalscccceevveerieriiiinienieeiieneeeieesieeieeie e 5-1
Control and Indicator Data TypPes......ccccceevueeveerieriiienienieeneeeieeeen 5-2
CONSLANES ..ottt ettt ettt eneene e e sae s 5-3
Block Diagram NOGESccevueerieriiiriiiinieeree ettt sttt 5-3
Polymorphic VIs and FUNCHONSccueevieriiiiiiiiiiiiieeeeic et 5-4
FUNCHIONS OVEIVIEW ...ttt ettt ettt ettt s 5-4
Adding Terminals to FUNCHONScceeiviiriiiiiiiiiiiiieniceeeeecee e 5-5
Built-in VIs and FUNCHONSccoooviriiiniiiiiniiiiinciicicceerccecrneee e 5-5
EXPIESS VIS ottt ettt ettt sttt ettt sttt sat e et e st be s 5-5
Using Wires to Link Block Diagram ODbJectsccecueevuierieeiiienienieenierieeiee e 5-6
Wire Appearance and StIUCIUTE.coveerueerieereeniieieenteertee et ere e 5-6
WITING ODJECLS. .. iuiiiiieeiieiie ettt ettt sttt et esate s e st e saeeeae 5-7
Bending Wires.......c.eeviiriieiieeieeieeeieeiee et 5-7
UNAOING WITES ...eeiiviiiieiiieiieeteesiee sttt sttt st 5-8
Automatically Wiring ObJECctsceecuevveeriierieriieeniienieeiee e 5-8
SeleCtiNg WITES ..ccvveruririieiiiieriieeie sttt ettt et e e e e see e 5-8
Correcting BroKen WITES........ccuevueeiiiiinieinieiiieiteeie ettt s 5-8
COBTCION DScuiiiiiiiiiiietitete ettt st s 5-9
Block Diagram Data FLOWccc.eeciiiiiiiiiiniiieeieee ettt e 59
Data Dependency and Artificial Data Dependency........cccccovveevienieinieennennne. 5-10
Missing Data Dependencies..........coevuereeeriienieineenienieenee e 5-11
Flow-Through Parameters.........cc.ccoovierieeiiinieiieeieeieeecereeeeie e 5-12
Data Flow and Managing MemOTY.........cccecueeriieneeeriieniennieenieeieeniee e 5-12
Designing the BIock Diagrami..........c.cceevveeiiiniiiinienieiiiieieeieesteee ettt 5-13

© National Instruments Corporation vii LabVIEW Fundamentals

Contents

Chapter 6
Running and Debugging Vis

RUNNING VIS.ciiiiiiiiiieiie ettt ettt ettt sttt bt e e sbe e s tesbeenane et 6-1
Correcting BroKen VIScooieiiiiiiiiiieieee ettt sttt 6-2
Finding Causes for Broken VIS.........cccooiiiiiinieniiiniiniececeeceeseeee e 6-2
Common Causes of Broken VIS.......c..ccccoceeiiiniiniiniininneniincciceeeneeeeee 6-3
Debug@ing TeChNIQUESccocuieriieriiriieeie ettt ettt ettt e este s beesibesbae e 6-3
Execution Highlightingcooviiiiiiiiiniiiiiieieeet e 6-3
SINGIE-SIEPPING ..cenevirneieeiieeiieeie ettt ettt ettt e sttt e sate e e e sareas 6-4
Probe TOOL.....couiiiieiiiiiieieeteeeee ettt 6-4
BIreakPOintscovuiiiiiiiiieiieite ettt ettt ettt st ettt 6-4
Handling EITOTS ...cc..eiiiiiiiiiieiteee ettt ettt sttt et st esaeesabees 6-5
EITOT CIUSTETS ...ttt ettt sttt eae e 6-6
Using While Loops for Error Handlingccocceviiiiiiiiiinienienienienieee, 6-7
Using Case Structures for Error Handlingcccooovevviiiiiiniinieniinienieee, 6-7

Chapter 7
Creating Vis and SubVis

Searching for EXampPIes.........cocuoiiiiiiiiienieieiieeeeee ettt s 7-1
Using Built-In VIs and FUNCHONS..........cccooiiiiiiiiiiii i 7-1
Creating SUDVIS ...c..iiiiiieiee ettt ettt ettt ae b 7-1
Creating an ICOMovuiiiiiiii et 7-2
Building the Connector Panec.cceceeienenienenienieneieeeceesee e 7-3
Creating SubVlIs from Sections of @ VIcccoiiiiiniiiiiniiniicceceeee 7-4
Designing SubVI Front Panels..........cccociiieneniinenieiineieeceiceeenee e 7-4
Viewing the Hierarchy of VIS.......ccccoociiiiiiniiiiiiiiieeceeeeeeee 7-4
Polymorphic VIS ...c..ooiiiiiiiiiiiieeee et 7-5
SAVING VIS 1ottt ettt ettt sttt sttt ebe e b st et saeens 7-6
NAMINGZ VIS .ttt st 7-6
Saving for a Previous Versioncccceeveririenieieneeiencenee e 7-7
CUSTOMIZING VIS ..ottt ettt ettt sbe e 7-7

Chapter 8
Loops and Structures

For Loop and While LoOpP StrUCLUIEScccueruierieriiiiiieiceiiestceie et 8-1
FOT LOOPS ettt sttt 8-2

WHILE LLOOPS ..ttt ettt st 8-3
Controlling TIMINEccueeviriirienieieiee e ettt saesiens 8-5
AUto-INdexing LOOPS ..ccveeviruiieiiiiiiiene ettt 8-5
Auto-Indexing to Set the For Loop Count.........c.ccocceveeienenienennne. 8-6

Auto-Indexing with While LoOpS.........coceevuirieneniiniiiiceeecceeee 8-6

LabVIEW Fundamentals vili ni.com

Contents

Using Loops to Build AITaYS......cccueeviervernieniieiienieeseeeie et 8-7
Shift Registers and the Feedback Node in LOOPS.......ccceveevveineenceeniinnieneene 8-7
Shift REZISTETS ..eevuvieiiiriiieriie ettt sttt s saeeens 8-7
Feedback NOde........cocuivieriiiiiiiieniecccecteeccceeee e 8-10
Default Data in LOOPS ...ccveeriierieriiiiieeieeriee sttt sttt 8-11
Case, Sequence, and EVent StrUCIUTEScc..eevvieriieriierieeiee sttt 8-11
CaSE STIUCLUIES ..c..eouveiienieiieeieiieteeteteete et ser et eer et et esreeaee bt sanesaeesneneesnennees 8-11
Case Selector Values and Data TYPeS......ccceeceeereerieenieeneeenieeneenane 8-12
Input and Output TUNNEISccccevvieeriiriiiniieiieeee e 8-13
Using Case Structures for Error Handlingccccooeveveninenenee. 8-13
SEQUENCE SIIUCTUIES.eeeeeiiieriiieieeitteeriteeite ettt se et s et e st seeeree s 8-13
EVENE StIUCIUTES. ...cueviiiiiieeeie ettt et e e s aee e 8-15

Chapter 9
Grouping Data Using Strings, Arrays, and Clusters

Grouping Data With StrNES ...c.eevviriiiiieiieeieeeec et 9-1
Strings on the Front Panelccoooiiiiiniiiiiiiniiiieieeee e 9-1
String Display TYPES...cccueeeveereerieriieniieerieerte ettt 9-2
TADIES ettt st ettt st e bt et es 9-2
Editing, Formatting, and Parsing Stringsccccceeeevierneeniennieeneesnieeneenae 9-3
Formatting and Parsing Strings..........cccecevvieenieineenieniiennieecieeeene 9-3
Grouping Data with Arrays and CIUSEEIS.......c.cueevieriiiinierieeiee ettt 9-4
ATTAYS tenvveeteeete ettt et e ettt et e st et e st e s bt e st e et eshe e e b e e htesab e e bt e sate e st e sabeenbaes 9-4
RESIIICHONS. c...eeitieiieeieeitceeee ettt st 9-4
TIAEXES ettt st 9-4
Examples Of AITays......cocueeiuieiniiineeiiieienieereteeie et 9-5
Creating Array Controls, Indicators, and Constantscc......... 9-7
Creating Multidimensional ATTayS........cccevveereeerieeenieneenieeneeeieennns 9-7
ATTAY FUNCLIONS.......viiiieiiiiiieeeeiee e 9-8
Default Data in AITaysoocveevieriiiinieniecieeeeeee et 9-10
CTUSLETS .ttt et ettt sttt et e st et e st e bt e satesbaesabesabeesaaesnbeennee 9-10
Order of Cluster EIements..........cccceovuievierieenienieinienieeee e 9-10
Cluster FUNCHONScooviiiiiiiieiieeteeiteee ettt 9-11
Creating Cluster Controls, Indicators, and Constants....................... 9-11

Chapter 10
Graphs and Charts

Types of Graphs and CRarts..........coeceeviiiiriineee e 10-1
Waveform Graphs and Chartsccocceoirieiniiieninieneeieeeeeeee e 10-2
Waveform Graphscc.oocerieiieniiniieenne e 10-2

Waveform Chartscoeeevieiiiiiieieieneceeeeee e 10-3

Waveform Data TYPe......cooerueeieiiniiniieieieeeeeee e 10-3

© National Instruments Corporation ix LabVIEW Fundamentals

Contents

XY GIAPRS ettt ettt ettt sttt b e i e 10-3
Intensity Graphs and Chartscceevveeieenieiieeniteeierieeee st 10-4
INtenSItY CRATTS...cccuiiiiierie ittt 10-5
INtenSItY GraphisS...cc.ceeceeerieiiieiieiiienteee ettt 10-6
Digital Waveform Graphs..........coceeiinieiiienieeeiceee e 10-7

Digital Waveform Data TYPEoocveeveeiviiinieniieiieeieesee e 10-10

3D GIAPRS ettt et sttt et 10-10

Customizing Graphs and CRATtS..........coceeriieriiiinieirie ettt 10-13

Using Multiple X- and Y-Scales......ccccoevieniirieiniiiiiieiieieesieeee e 10-13

ATLOSCALIINE ..ottt sttt et b e s b et e et sbe e 10-13

Formatting X- and Y-Scalesccccceererieiiiniiiiiieieceeieeestee e 10-13

Using the Graph Palettecccooiiiiiiiiiiiiieneiieeeeeeeeeeee e 10-14

Customizing Graph and Chart APpearancececceeeveereenieneeneneenennens 10-15

CUStOmMIZING GIaPhS....cc.eouveiiiieiieiieriieeete ettt sttt 10-15

USIing Graph CUISOTScc.ceiuiriiriieiinieeie sttt 10-16

Using Graph ANNOtationsc.ccecuerueerieniieieneeieneeieneeenee e 10-17

Customizing 3D Graphsccccevvevierierienieenenieieeeee e e 10-18

Customizing CRAITSooieiuiiieieeieee ettt s 10-18

Configuring Chart History Lengthccccooeeveniiinninnnnininennn 10-19

Configuring Chart Update Modesc..cceeeeveneeiecinieiinenenieeenenn 10-19

Using Overlaid and Stacked PIOtScccccovieniiiiniiiicicceeee 10-20

Chapter 11
File 1/0

Basics Of FIle I/O ...c..coiiiiiiiiiiieiceece ettt 11-1
Choosing a File I/0O FOTmat.........cccooiiiriiniiiiieiieeteesteeieeite et 11-2
Using VIs and Functions for Common File I/O Operations.........c..cccceeeeverieciieeencnne. 11-3
USING StOTAZE VIS....uiiiiiiiiiiiiieeitieitete ettt ettt sttt e e e saae e e 11-5
Creating Text and Spreadsheet Filesccccooviiriiiniiiniieniiiieeieeecceeeeeee e 11-6
Formatting and Writing Data to Filesoccceviiiviinieniiiniieiieceesie e 11-7
Scanning Data from FIles.........ccoooiiiiiniiiniinieece e 11-7
Creating Binary FIIES.......cooiuiiiiiiiiiiiciece ettt 11-7
Creating Datalog FIlescoiuiiiiiiiiiiieeere ettt e 11-7
Writing Waveforms t0 Filescoouiiiiiiiiiiiiiieeiceeeee et 11-8
Reading Waveforms from Files...........coocviiiiiiiiiiiiiiiiceeeecee e 11-9

Chapter 12

Documenting and Printing Vis

DocuMENtNG VIS....uiiiiiiiiiiieiieeie ettt ettt et s st 12-1
Printing VIS ..ottt sttt ettt sttt et 12-2

LabVIEW Fundamentals X ni.com

Contents

Appendix A
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation Xi LabVIEW Fundamentals

About This Manual

Conventions

Before you read this manual, use the Getting Started with LabVIEW manual
as a tutorial to familiarize yourself with the LabVIEW graphical
programming environment and the basic LabVIEW features you use to
build data acquisition and instrument control applications.

This manual describes LabVIEW programming concepts, techniques,
features, VIs, and functions you can use to create test and measurement,
data acquisition, instrument control, datalogging, measurement analysis,
and report generation applications.

This manual is a subset of the content available in the LabVIEW Help,
which includes all the content in this manual. Refer to the LabVIEW Help
for more information about any of the concepts described in this manual.

This manual does not include specific information about each palette, tool,
menu, dialog box, control or indicator, or built-in VI or function. Refer to
the LabVIEW Help for more information about these items and for detailed,
step-by-step instructions for using LabVIEW features and for building
specific applications. Refer to the LabVIEW Documentation Resources
section of Chapter 1, Introduction to LabVIEW, for more information about
the LabVIEW Help and accessing it.

»

bold

This manual uses the following conventions:

The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.
This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter

© National Instruments Corporation Xili LabVIEW Fundamentals

About This Manual

italic

monospace

monospace bold

monospace italic

Platform

right-click

LabVIEW Fundamentals

names, controls and indicators on the front panel, dialog boxes, sections of
dialog boxes, menu names, and palette names.

Ttalic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, operations, variables,
filenames, and extensions.

Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

(Mac 0S) Press <Command>-click to perform the same action as a
right-click.

Xiv ni.com

Introduction to LabVIEW

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a
graphical programming language that uses icons instead of lines of text to
create applications. In contrast to text-based programming languages,
where instructions determine the order of program execution, LabVIEW
uses dataflow programming, where the flow of data through the nodes on
the block diagram determines the execution order of the VIs and functions.
VIs, or virtual instruments, are LabVIEW programs that imitate physical
instruments.

In LabVIEW, you build a user interface by using a set of tools and objects.
The user interface is known as the front panel. You then add code using
graphical representations of functions to control the front panel objects.
This graphical source code is also known as G code or block diagram code.
The block diagram contains this code. In some ways, the block diagram
resembles a flowchart.

You can purchase several add-on software toolkits for developing
specialized applications. All the toolkits integrate seamlessly in LabVIEW.
Refer to the National Instruments Web site at ni . com\toolkits for more
information about these toolkits.

LabVIEW Documentation Resources

LabVIEW includes extensive online and print documentation for new and
experienced LabVIEW users.

LabVIEW Help

Use the LabVIEW Help to access information about LabVIEW
programming concepts, step-by-step instructions for using LabVIEW, and
reference information about LabVIEW Vs, functions, palettes, menus, and
tools.

The LabVIEW Help includes links to the technical support resources on the
National Instruments Web site, such as NI Developer Zone, the
KnowledgeBase, and the Product Manuals Library.

© National Instruments Corporation 1-1 LabVIEW Fundamentals

Chapter 1 Introduction to LabVIEW

Access the LabVIEW Help by selecting Help»Search the LabVIEW
Help. You also can print a help topic or a book of help topics from the
LabVIEW Help.

Refer to the LabVIEW Help for more information about printing help
topics.

@ Note (Mac 0S) National Instruments recommends that you use Safari 1.0 or later or
Firefox 1.0.2 or later to view the LabVIEW Help. (Linux) National Instruments recommends
that you use Netscape 6.0 or later, Mozilla 1.2 or later, or Firefox 1.0.2 or later to view the
LabVIEW Help.

Print Documents

LabVIEW Fundamentals

After you install a LabVIEW add-on such as a toolkit, module, or driver,
the documentation for that add-on appears in the LabVIEW Help or appears
in a separate help system you access by selecting Help»Add-On Help,
where Add-On Help is the name of the separate help system for the add-on.

The following print documents contain information that you might find
helpful as you use LabVIEW:

e Getting Started with LabVIEW—1Use this manual as a tutorial to
familiarize yourself with the LabVIEW graphical programming
environment and the basic LabVIEW features you use to build data
acquisition and instrument control applications.

e LabVIEW Quick Reference Card—Use this card as a reference for
information about documentation resources, keyboard shortcuts, data
type terminals, and tools for editing, execution, and debugging.

e LabVIEW Fundamentals—Use this manual to learn about LabVIEW
programming concepts, techniques, features, VIs, and functions you
can use to create test and measurement, data acquisition, instrument
control, datalogging, measurement analysis, and report generation
applications. The LabVIEW Help includes all the content in this
manual.

* LabVIEW Release Notes—Use these release notes to install and
uninstall LabVIEW. The release notes also describe the system
requirements for the LabVIEW software, including the LabVIEW
Application Builder.

e LabVIEW Upgrade Notes—Use these upgrade notes to upgrade
LabVIEW for Windows, Mac OS, and Linux to the latest version.
The upgrade notes also describe new features and issues you might
encounter when you upgrade.

1-2 ni.com

Chapter 1 Introduction to LabVIEW

These documents are available in print and as PDFs in the labview\
manuals directory. You must have Adobe Reader with Search and
Accessibility 5.0.5 or later installed to view the PDFs. You must have
Adobe Reader with Search and Accessibility 6.x or later installed to search
PDF versions of these manuals. (Mac 0S) You must have Adobe Reader
with Search and Accessibility 6.x or later installed to view the PDFs.

Refer to the Adobe Systems Incorporated Web site at www . adobe . com to
download Acrobat Reader. Refer to the National Instruments Product
Manuals Library at ni . com/manuals for updated documentation
resources.

Readme Documents

The following readme documents contain information that you might find
helpful as you use LabVIEW:

* LabVIEW Readme—Use this file to learn important last-minute
information about LabVIEW, including installation and upgrade
issues, compatibility issues, changes from the previous version of
LabVIEW, and known issues with LabVIEW. Open the LabVIEW
Readme by selecting Start»All Programs»National Instruments»
LabVIEW 8.0»Readme and opening readme . html or by navigating
to the labview\readme directory and opening readme.html.

* LabVIEW Application Builder Readme—Use this document to learn
about installing the LabVIEW Application Builder, which is included
in the LabVIEW Professional Development System and is available
for purchase separately. Open the LabVIEW Application Builder
Readme by selecting Start»All Programs»National Instruments»
LabVIEW 8.0»Readme and opening readme_AppBldr.html or by
navigating to the labview\readme directory and opening
readme_AppBldr.html.

LabVIEW VI Templates, Example Vis, and Tools

Use the LabVIEW VI templates, example VIs, and tools as a starting point
to help you design and build VlIs.

© National Instruments Corporation 1-3 LabVIEW Fundamentals

Chapter 1 Introduction to LabVIEW

LabVIEW VI Templates

The built-in VI templates include the subVls, functions, structures, and
front panel objects you need to get started building common measurement
applications. VI templates open as untitled VIs that you must save. Select
File»New to display the New dialog box, which lists the built-in VI
templates. You also can display the New dialog box by clicking the New
link in the Getting Started window.

LabVIEW Example Vis

LabVIEW searches among hundreds of example VIs you can use and
incorporate into VIs that you create. You can modify an example to fit an
application, or you can copy and paste from one or more examples into a
VI that you create. Browse or search the example VIs with the NI Example
Finder by selecting Help»Find Examples.

Refer to NI Developer Zone at ni . com/ zone for additional example VlIs.

You also can access examples using the Open example and Browse
related examples buttons located at the bottom of certain VI and function
reference topics in the LabVIEW Help. Click the Open example button to
open the example VI to which the topic refers. Click the Browse related
examples button to open the NI Example Finder and display related
example VIs.

You also can right-click a VI or function on the block diagram or on a
pinned palette and select Examples from the shortcut menu to display a
help topic with links to examples for that VI or function.

LabVIEW Tools for DAQ Configuration (Windows)

LabVIEW Fundamentals

Use Measurement & Automation Explorer (MAX) to help you configure
measurement devices. Select Tools»Measurement & Automation
Explorer to launch MAX and configure National Instruments hardware
and software. You install MAX from the National Instruments Device
Drivers CD.

Refer to the Controlling Instruments book on the Contents tab in the
LabVIEW Help for information about controlling other types of
instruments.

Use the DAQ Assistant to graphically configure channels or common
measurement tasks. The DAQ Assistant Express VI does not appear on the
Functions palette unless you have NI-DAQmx installed. Refer to the DAQ

1-4 ni.com

Chapter 1 Introduction to LabVIEW

Getting Started Guide for more information about installing NI-DAQmx.
You can access the DAQ Assistant in the following ways:

© National Instruments Corporation

Place the DAQ Assistant Express VI on the block diagram.

Right-click a DAQmzx global channel control and select New Channel
(DAQ Assistant) from the shortcut menu. Right-click a DAQmx task
name control and select New Task (DA Q Assistant) from the shortcut
menu. Right-click a DAQmx scale name control and select New Scale
(DAQ Assistant) from the shortcut menu.

Launch Measurement & Automation Explorer and select Data
Neighborhood or Scales from the Configuration tree. Click the
Create New button. Configure an NI-DAQmx channel, task, or scale.

1-5 LabVIEW Fundamentals

Introduction to Virtual
Instruments

LabVIEW programs are called virtual instruments, or VIs, because their
appearance and operation imitate physical instruments, such as
oscilloscopes and multimeters. Every VI uses functions that manipulate
input from the user interface or other sources and display that information
or move it to other files or other computers.

A VI contains the following three components:
* Front panel—Serves as the user interface.

* Block diagram—Contains the graphical source code that defines the
functionality of the VI.

* Icon and connector pane—Identifies the interface to the VI so that
you can use the VI in another VI. A VI within another VI is called a
subVI. A subVI corresponds to a subroutine in text-based
programming languages.

© National Instruments Corporation 2-1 LabVIEW Fundamentals

Chapter 2

Front Panel

Introduction to Virtual Instruments

Block Diagram

The front panel is the user interface of the VI. The following figure shows
an example of a front panel.

Sraled Sawkooth

Sawtooth

Armplitude

4 &
e,

)

Amplitude

-40,0-

1 1 1 0 1 i
0.0E+0 2.0E-2 4.0E-Z2 6.0E-2 &.0E-2 1.0E-1

Time

You build the front panel using controls and indicators, which are the
interactive input and output terminals of the VI, respectively. Controls are
knobs, push buttons, dials, and other input mechanisms. Indicators are
graphs, LEDs, and other output displays. Controls simulate instrument
input mechanisms and supply data to the block diagram of the VI.
Indicators simulate instrument output mechanisms and display data the
block diagram acquires or generates.

Refer to Chapter 4, Building the Front Panel, for more information about
the front panel.

LabVIEW Fundamentals

After you build the front panel, you add code using graphical
representations of functions to control the front panel objects. The block
diagram contains this graphical source code, also known as G code or block
diagram code. Front panel objects appear as terminals on the block
diagram.

Refer to Chapter 5, Building the Block Diagram, for more information
about the block diagram.

2-2 ni.com

Chapter 2 Introduction to Virtual Instruments

The following VI contains several primary block diagram
objects—terminals, functions, and wires.

{3 AddandSubtract.vi Front Panel =

File Edit Miew Project Operate Tools MWindow Help

=) |{§}| © ’_|_|| | 13pk Application Font |+ || !mv' 0
o] T T T T T T T T T T

T T
+|] T 1 R N R W N
- 80.00 poo | 43 AddandSubtract.viBlock Di... - |[DJE3
File Edit Yiew Project Operate Tools W
b -b

B 0.00 n.00 g ©|E|

agals|

<) B] T iz

DE |

= Eubkrack
iize = {123

DE | L

<] il |

Terminals

The terminals represent the data type of the control or indicator. You can
configure front panel controls or indicators to appear as icon or data type
terminals on the block diagram. By default, front panel objects appear as
icon terminals. For example, a knob icon terminal, shown as follows,
represents a knob on the front panel.

The DBL at the bottom of the terminal represents a data type of
double-precision, floating-point numeric. A DBL terminal, shown as
follows, represents a double-precision, floating-point numeric control.

© National Instruments Corporation 2-3 LabVIEW Fundamentals

Chapter 2

Nodes

Wires

LabVIEW Fundamentals

Introduction to Virtual Instruments

Refer to the Control and Indicator Data Types section of Chapter 5,
Building the Block Diagram, for more information about data types in
LabVIEW.

Terminals are entry and exit ports that exchange information between the
front panel and block diagram. Data you enter into the front panel controls
(a and b in the previous figure) enter the block diagram through the control
terminals. The data then enter the Add and Subtract functions. When the
Add and Subtract functions complete their calculations, they produce new
data values. The data values flow to the indicator terminals, where they
update the front panel indicators (a+b and a-b in the previous figure).

Nodes are objects on the block diagram that have inputs and/or outputs and
perform operations when a VI runs. They are analogous to statements,
operators, functions, and subroutines in text-based programming
languages. The Add and Subtract functions in the previous figure are
examples of nodes.

Refer to the Block Diagram Nodes section of Chapter 5, Building the Block
Diagram, for more information about nodes.

You transfer data among block diagram objects through wires. In the
previous figure, wires connect the control and indicator terminals to the
Add and Subtract functions. Each wire has a single data source, but you can
wire it to many VIs and functions that read the data. Wires are different
colors, styles, and thicknesses, depending on their data types. A broken
wire appears as a dashed black line with a red X in the middle. Broken wires
occur for a variety of reasons, such as when you try to wire two objects with
incompatible data types.

Refer to the Using Wires to Link Block Diagram Objects section of
Chapter 5, Building the Block Diagram, for more information about wires.

2-4 ni.com

Chapter 2 Introduction to Virtual Instruments

Structures

Structures are graphical representations of the loops and case statements of
text-based programming languages. Use structures on the block diagram to
repeat blocks of code and to execute code conditionally or in a specific
order.

Refer to Chapter 8, Loops and Structures, for more information about
structures.

Icon and Connector Pane

After you build a VI front panel and block diagram, build the icon and the
connector pane so you can use the VI as a subVI. The icon and connector
pane correspond to the function prototype in text-based programming
languages. Every VI displays an icon, such as the one shown as follows,
in the upper right corner of the front panel and block diagram windows.

L

=

Anicon is a graphical representation of a VI. It can contain text, images, or
a combination of both. If you use a VI as a subV], the icon identifies the
subVT on the block diagram of the VI. You can double-click the icon to
customize or edit it.

Refer to the Creating an Icon section of Chapter 7, Creating VIs and
SubVlIs, for more information about icons.

You also need to build a connector pane, shown as follows, to use the VI as
a subVI.

The connector pane is a set of terminals that correspond to the controls and
indicators of that VI, similar to the parameter list of a function call in
text-based programming languages. The connector pane defines the inputs
and outputs you can wire to the VI so you can use it as a subVI. A connector
pane receives data at its input terminals and passes the data to the block
diagram code through the front panel controls and receives the results at its
output terminals from the front panel indicators.

© National Instruments Corporation 2-5 LabVIEW Fundamentals

Chapter 2 Introduction to Virtual Instruments

Refer to the Building the Connector Pane section of Chapter 7, Creating
Vs and SubVls, for more information about setting up connector panes.

@ Note Try not to assign more than 16 terminals to a VI. Too many terminals can reduce the
readability and usability of the VL.

Using and Customizing Vls and SubVis

After you build a VI and create its icon and connector pane, you can use it
as a subVL

Refer to the Creating SubVls section of Chapter 7, Creating VIs and
SubVls, for more information about subVIs.

You can customize the appearance and behavior of a VI.

Refer to the Customizing Vls section of Chapter 7, Creating VIs and
SubVls, for more information about customizing a VI.

LabVIEW Fundamentals 2-6 ni.com

LabVIEW Environment

Use the LabVIEW palettes, tools, and menus to build the front panels and
block diagrams of VIs. LabVIEW includes three palettes: the Controls
palette, the Functions palette, and the Tools palette. LabVIEW also
includes the Getting Started window, the Context Help window, the
Project Explorer window, and the Navigation window. You can
customize the Controls and Functions palettes, and you can set several
work environment options.

Getting Started Window

The Getting Started window appears when you launch LabVIEW. Use
this window to create new VlIs, select among the most recently opened
LabVIEW files, find examples, and launch the LabVIEW Help. You also
can access information and resources to help you learn about LabVIEW,
such as specific manuals, help topics, and resources on the National
Instruments Web site, ni . com.

The Getting Started window disappears when you open an existing file or
create a new file. The Getting Started window appears when you close all
open front panels and block diagrams. You also can display the window by
selecting View»Getting Started Window.

Controls Palette

The Controls palette is available only on the front panel. The Controls
palette contains the controls and indicators you use to create the front panel.
The controls and indicators are located on subpalettes based on the types of
controls and indicators.

Refer to the Front Panel Controls and Indicators section of Chapter 4,
Building the Front Panel, for more information about the types of controls
and indicators.

© National Instruments Corporation 3-1 LabVIEW Fundamentals

Chapter 3 LabVIEW Environment

Select View»Controls Palette or right-click the front panel workspace to
display the Controls palette. LabVIEW retains the Controls palette
position and size so when you restart LabVIEW, the palette appears in the
same position and has the same size. You can change the contents of the
Controls palette.

Refer to the Customizing the Controls and Functions Palettes section of
this chapter for more information about customizing the Controls palette.

Functions Palette

The Functions palette is available only on the block diagram. The
Functions palette contains the VIs and functions you use to build the block
diagram. The VIs and functions are located on subpalettes based on the
types of VIs and functions.

Select View»Functions Palette or right-click the block diagram
workspace to display the Functions palette. LabVIEW retains the
Functions palette position and size so when you restart LabVIEW, the
palette appears in the same position and has the same size. You can change
the contents of the Functions palette.

Refer to the Customizing the Controls and Functions Palettes section of
this chapter for more information about customizing the Functions palette.

Navigating the Controls and Functions Palettes

LabVIEW Fundamentals

Click an object on the palette to place the object on the cursor so you can
place it on the front panel or block diagram. You also can right-click a VI
icon on the palette and select Open VI from the shortcut menu to open
the VL.

Click the black arrows on the left side of the Controls or Functions palette

to expand or collapse subpalettes. These arrows appear only if you set the
palette format to Category (Standard) or Category (Icons and Text).

3-2 ni.com

Chapter 3 LabVIEW Environment

Use the following buttons on the Controls and Functions palette toolbars
to navigate the palettes, to configure the palettes, and to search for controls,
Vs, and functions.

Up—Takes you up one level in the palette hierarchy. Click this button and hold the

mouse button down to display a shortcut menu that lists each subpalette in the path to
the current subpalette. Select a subpalette name in the shortcut menu to navigate to the
subpalette. This button appears only if you set the palette format to Icons, Icons and
Text, or Text.

Search—Changes the palette to search mode so you can perform text-based searches

to locate controls, VIs, or functions on the palettes. While a palette is in search mode,
click the Return button to exit search mode and return to the palette.

View—Provides options for selecting a format for the current palette, showing and
Cuislli hiding categories for all palettes, and sorting items in the Text and Tree formats

alphabetically. Select Options from the shortcut menu to display the
Controls/Functions Palettes page of the Options dialog box, in which you can select
a format for all palettes. This button appears only if you click the thumbtack in the
upper left corner of a palette to pin the palette.

Restore Palette Size—Resizes the palette to its default size. This button appears only
if you resize the Controls or Functions palette.

Tools Palette

The Tools palette is available on the front panel and the block diagram.
A tool is a special operating mode of the mouse cursor. The cursor
corresponds to the icon of the tool you select on the palette. Use the tools
to operate and modify front panel and block diagram objects.

If automatic tool selection is enabled and you move the cursor over objects
on the front panel or block diagram, LabVIEW automatically selects the
corresponding tool from the Tools palette.

Select View»Tools Palette to display the Tools palette. LabVIEW retains
the Tools palette position so when you restart LabVIEW, the palette
appears in the same position.

@ Tip Press the <Shift> key and right-click to display a temporary version of the Tools
palette at the location of the cursor.

© National Instruments Corporation 3-3 LabVIEW Fundamentals

Chapter 3 LabVIEW Environment

Menus and Toolbars

Menus

Use the menu and toolbar items to operate and modify front panel and block
diagram objects.

The menus at the top of a VI window contain items common to other
applications, such as Open, Save, Copy, and Paste, and other items
specific to LabVIEW. Some menu items also list keyboard shortcuts.

(Mac 0S) The menus appear at the top of the screen.

(Windows and Linux) The menus display only the most recently used items
by default. Click the arrows at the bottom of a menu to display all items.
You can display all menu items by default by selecting Tools»Options,
selecting Environment from the Category list, and removing the
checkmark from the Use abridged menus checkbox.

@ Note Some menu items are unavailable while a VI runs.

LabVIEW Fundamentals

Shortcut Menus

All LabVIEW objects have associated shortcut menus. As you create a VI,
use the shortcut menu items to change the appearance or behavior of front
panel and block diagram objects. To access the shortcut menu, right-click
the object.

(Mac 08) Press <Command>-click to perform the same action as right-click.

Shortcut Menus in Run Mode

When a VI is running, or is in run mode, all front panel objects have an
abridged set of shortcut menu items by default. Use the abridged shortcut
menu items to cut, copy, or paste the contents of the object, to set the object
to its default value, or to read the description of the object.

Some of the more complex controls have additional options. For example,
the knob shortcut menu includes items to add a needle and to change the
display of scale markers.

3-4 ni.com

Chapter 3 LabVIEW Environment

VI Toolbar

Use the buttons on the VI toolbar to run VIs, pause Vs, abort VIs, debug
VIs, configure fonts, and align, group, and distribute objects.

Refer to Chapter 6, Running and Debugging Vls, for more information
about some of the toolbar buttons, or refer to the LabVIEW Help for a
complete list and descriptions of the toolbar buttons.

Project Explorer Window Toolbars

Use the buttons on the Standard, Project, Build, and Source Control
toolbars to perform operations in a LabVIEW project. The toolbars are
available at the top of the Project Explorer window. You might need to
expand the Project Explorer window to view all of the toolbars.

Refer to the Project Explorer Window section of this chapter for more
information about LabVIEW projects.

Context Help Window

The Context Help window displays basic information about LabVIEW
objects when you move the cursor over each object. Objects with context
help information include VIs, functions, constants, structures, palettes,
properties, methods, events, dialog box components, and items in the
Project Explorer window. You also can use the Context Help window to
determine exactly where to connect wires to a VI or function.

Refer to the Using Wires to Link Block Diagram Objects section of
Chapter 5, Building the Block Diagram, for more information about using
the Context Help window to wire objects.

Select Help»Show Context Help to display the Context Help window.
You also can display the Context Help window by clicking the Show
Context Help Window button on the toolbar, shown as follows.

?

(Windows) You also can display the window by pressing the <Ctrl-H> keys.
(Mac 08) Press the <Command-H> keys. (Linux) Press the <Alt-H> keys.

© National Instruments Corporation 3-5 LabVIEW Fundamentals

Chapter 3 LabVIEW Environment

The Context Help window resizes to accommodate each object
description. You also can resize the Context Help window to set its
maximum size. LabVIEW retains the Context Help window position and
size so when you restart LabVIEW, the window appears in the same
position and has the same maximum size.

If a corresponding LabVIEW Help topic exists for an object the Context
Help window describes, a blue Detailed help link appears in the Context
Help window. Also, the Detailed help button in the Context Help window,
shown as follows, is enabled. Click the link or the button to display more
information about the object.

Project Explorer Window

Use the Project Explorer window to create and edit LabVIEW projects.
Use projects to group together LabVIEW files and non-LabVIEW files,
create build specifications, and deploy or download files to targets. Select
File»New Project to display the Project Explorer window.

Navigation Window

The Navigation window displays an overview of the active front panel in
edit mode or the active block diagram. Use the Navigation window to
navigate large front panels or block diagrams. Click an area of the image in
the Navigation window to display that area in the front panel or block
diagram window. You also can click and drag the image in the Navigation
window to scroll through the front panel or block diagram. Portions of the
front panel or block diagram that are not visible appear dimmed in the
Navigation window.

Select View»Navigation Window to display the Navigation window.
(Windows) You also can display the window by pressing the <Ctrl-Shift-N>
keys. (Mac 08) Press the <Command-Shift-N> keys. (Linux) Press the
<Alt-Shift-N> keys.

@ Note The Navigation window is available only in the LabVIEW Full and Professional
Development Systems.

LabVIEW Fundamentals

3-6 ni.com

Chapter 3 LabVIEW Environment

Resize the Navigation window to resize the image it displays. LabVIEW
retains the Navigation window position and size so when you restart
LabVIEW, the window appears in the same position and has the same size.

Customizing Your Work Environment

You can customize the Controls and Functions palettes, and you can use
the Options dialog box to select a palette format and set other work
environment options.

Customizing the Controls and Functions Palettes

You can customize the Controls and Functions palettes in the following
ways:

Edit a palette set to rearrange the built-in palettes, create and move
subpalettes, and so on using the Edit Controls and Functions Palette
Set dialog box. Select Tools»Advanced»Edit Palette Set to display
the Edit Controls and Functions Palette Set dialog box. Right-click
the palette you want to modify and select from the options on the
shortcut menu.

Add items on the Functions palette to the Favorites category. On a
pinned Functions palette, right-click an object and select Add Item to
Favorites from the shortcut menu. In the Category (Standard) and
Category (Icons and Text) formats, you also can expand a palette to
display a subpalette, right-click the title of the subpalette, and select
Add Subpalette to Favorites from the shortcut menu.

Setting Work Environment Options

Select Tools»Options to customize LabVIEW. Use the Options dialog
box to set options for front panels, block diagrams, paths, performance and
disk issues, the alignment grid, palettes, undo, debugging tools, colors,
fonts, printing, the History window, and other LabVIEW features.

Use the Category list at the left side of the Options dialog box to select
among the different categories of options.

© National Instruments Corporation

3-7 LabVIEW Fundamentals

Building the Front Panel

The front panel is the user interface of a VI. Generally, you design the front
panel first and then design the block diagram to perform tasks on the inputs
and outputs you create on the front panel.

Refer to Chapter 5, Building the Block Diagram, for more information
about the block diagram.

You build the front panel with controls and indicators, which are the
interactive input and output terminals of the VI, respectively. Controls are
knobs, push buttons, dials, and other input mechanisms. Indicators are
graphs, LEDs, and other output displays. Controls simulate instrument
input mechanisms and supply data to the block diagram of the VI.
Indicators simulate instrument output mechanisms and display data the
block diagram acquires or generates.

Select View»Controls Palette to display the Controls palette and then
select controls and indicators from the Controls palette and place them on
the front panel.

Front Panel Controls and Indicators

Use the front panel controls and indicators located on the Controls palette
to build the front panel. Types of controls and indicators include numeric
controls and indicators such as slides and knobs, graphs, charts, Boolean
controls and indicators such as buttons and switches, strings, paths, arrays,
clusters, listboxes, tree controls, tables, ring controls, enumerated type
controls, containers, and so on.

© National Instruments Corporation 4-1 LabVIEW Fundamentals

Chapter 4 Building the Front Panel

Styles of Controls and Indicators

Numeric Displays,

LabVIEW Fundamentals

Front panel controls and indicators can appear in modern, classic, or system
style.

Modern and Classic Controls and Indicators

Many front panel objects have a high-color appearance. Set the monitor to
display at least 16-bit color for optimal appearance of the objects.

The controls and indicators located on the Modern palette also have
corresponding low-color objects. Use the controls and indicators located on
the Classic palette to create VIs for 256-color and 16-color monitor
settings.

System Controls and Indicators

Use the system controls and indicators located on the System palette in
dialog boxes you create. The system controls and indicators are designed
specifically for use in dialog boxes and include ring and spin controls,
numeric slides, progress bars, scroll bars, listboxes, tables, string and path
controls, tab controls, tree controls, buttons, checkboxes, radio buttons, and
an opaque label that automatically matches the background color of its
parent. These controls differ from those that appear on the front panel only
in terms of appearance. These controls appear in the colors you have set up
for your system.

Because the system controls change appearance depending on which
platform you run the VI, the appearance of controls in VIs you create is
compatible on all LabVIEW platforms. When you run the VI on a different
platform, the system controls adapt their color and appearance to match the
standard dialog box controls for that platform.

Refer to the Designing Dialog Boxes section of this chapter for information
about designing dialog boxes.

Slides, Scroll Bars, Knobs, Dials, and Time Stamps

Use the numeric objects located on the Numeric and Classic Numeric
palettes to create slides, scroll bars, knobs, dials, and numeric displays. The
palette also includes color boxes and a color ramp for setting color values
and time stamps for setting time and date values. Use the numeric objects
to enter and display numeric data.

4-2 ni.com

Chapter 4 Building the Front Panel

Numeric Controls and Indicators

Numeric controls and indicators are the simplest way to enter and display
numeric data. You can resize these front panel objects horizontally to
accommodate more digits. Change the value of a numeric control using any
of the following ways:

* Use the Operating tool or the Labeling tool to click inside the digital
display window and enter numbers from the keyboard.

* Use the Operating tool to click the increment or decrement arrow
buttons of a numeric control.

» Use the Operating tool or the Labeling tool to place the cursor to the
right of the digit you want to change and press the up or down arrow
keys.

By default, LabVIEW displays and stores numbers like a calculator. A
numeric control or indicator displays up to six digits before automatically
switching to exponential notation. You can configure the number of digits
LabVIEW displays before switching to exponential notation by
right-clicking the numeric object and selecting Format and Precision
from the shortcut menu to display the Format and Precision page of the
Numeric Properties dialog box.

Slide Controls and Indicators

Slide controls and indicators are numeric objects with a scale. The slide
controls and indicators include vertical and horizontal slides, a tank, and a
thermometer. Change the value of a slide control using either of the
following ways:

* Use the Operating tool to click or drag the slider to a new position.

* Use the digital display to enter data just as you do for numeric controls
and indicators.

Slide controls or indicators can display more than one value. Right-click
the object and select Add Slider from the shortcut menu to add more
sliders. The data type of a control with multiple sliders is a cluster that
contains each of the numeric values.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about clusters.

© National Instruments Corporation 4-3 LabVIEW Fundamentals

Chapter 4

LabVIEW Fundamentals

Building the Front Panel

Scroll Bar Controls and Indicators

Scroll bar controls, similar to slide controls, are numeric objects you can
use to scroll data. The scroll bar controls include vertical and horizontal
scroll bars. Change the value of a scroll bar by using the Operating tool to
click or drag the square scroll box to a new position, by clicking the
increment and decrement arrows, or by clicking the spaces between the
scroll box and the arrows.

Rotary Controls and Indicators

The rotary controls and indicators include knobs, dials, gauges, and meters.
The rotary objects operate similarly to the slide controls and indicators
because they are numeric objects with a scale. Change the value of a rotary
control using either of the following ways:

e Use the Operating tool to click or drag the needle to a new position.

e Use the digital display to enter data just as you do for numeric controls
and indicators.

Rotary controls or indicators can display more than one value. Right-click
the object and select Add Needle to add new needles. The data type of a
control with multiple needles is a cluster that contains each of the numeric
values.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about clusters.

Time Stamp Control and Indicator

Use the time stamp control and indicator to send and retrieve a time and
date value to or from the block diagram. You can change the value of the
time stamp control using any of the following ways:

e Right-click the control and select Format & Precision from the
shortcut menu.

e Click the Time/Date Browse button, shown as follows, to display the
Set Time and Date dialog box.

4-4 ni.com

Chapter 4 Building the Front Panel

* Right-click the control and select Data Operations»Set Time and
Date from the shortcut menu to display the Set Time and Date dialog
box.

* Right-click the control and select Data Operations»Set Time to Now
from the shortcut menu.

Graphs and Charts

Use the graph controls and indicators on the Graph and Classic Graph
palettes to plot numeric data in graph or chart form.

Refer to Chapter 10, Graphs and Charts, for more information about using
graphs and charts in LabVIEW.

Buttons, Switches, and Lights

Use the Boolean controls and indicators located on the Boolean and
Classic Boolean palettes to create buttons, switches, and lights. Use
Boolean controls and indicators to enter and display Boolean
(TRUE/FALSE) values. For example, if you are monitoring the
temperature of an experiment, you can place a Boolean warning light on the
front panel to indicate when the temperature exceeds a certain level.

Boolean controls have six types of mechanical action that allow you to
customize Boolean objects to create front panels that more closely
resemble the behavior of physical instruments. Use the shortcut menu to
customize the appearance of Boolean objects and how they behave when
you click them.

Radio Buttons Controls

Use the radio buttons control to give users a list of items from which they
can select only one item at a time. If you want to give users the option to
select none or one item, right-click the control and select Allow No
Selection from the shortcut menu to place a checkmark next to the menu
item.

Because the data type of a radio buttons control is an enumerated type, you
can use the radio buttons control to select the cases of a Case structure.

Refer to the Enumerated Type Controls section of this chapter for more
information about enumerated type controls. Refer to the Case Structures
section of Chapter 8, Loops and Structures, for more information about
Case structures.

© National Instruments Corporation 4-5 LabVIEW Fundamentals

Chapter 4 Building the Front Panel

Refer to the Radio Buttons Control VI and the Radio Buttons with Event
Structure VI in the labview\examples\general\controls\
booleans.11b for examples of using a radio buttons control.

Text Entry Boxes, Labels, and Path Displays

LabVIEW Fundamentals

Use the string and path controls and indicators on the String & Path and
Classic String & Path palettes to create text entry boxes and labels and to
enter or return the location of a file or directory.

String Controls and Indicators

Use the Operating or Labeling tool to enter or edit text in a string control
on the front panel. By default, new or changed text does not pass to the
block diagram until you terminate the edit session. At run time, you
terminate the edit session by clicking elsewhere on the panel, changing to
a different window, clicking the Enter button on the toolbar, or pressing
the <Enter> key on the numeric keypad. Pressing the <Enter> key on the
keyboard enters a carriage return.

Right-click a string control or indicator to select a display type for the text
in the control or indicator, such as password display or hex display.

Refer to the Strings on the Front Panel section of Chapter 9, Grouping
Data Using Strings, Arrays, and Clusters, for more information about
string display types.

Combo Box Controls

Use the combo box control to create a list of strings you can cycle through
on the front panel. A combo box control is similar to a text or menu ring
control. However, the value and data type of a combo box control are
strings instead of numbers as with ring controls.

Refer to the Ring Controls section of this chapter for more information
about ring controls.

Refer to the Case Structures section of Chapter 8, Loops and Structures, for
more information about Case structures.

4-6 ni.com

Chapter 4 Building the Front Panel

Path Controls and Indicators

Use path controls and indicators to enter or return the location of a file or
directory. (Windows and Mac 0S) You also can drag a path, folder, or file
from Windows Explorer and place it in a path control if dropping is enabled
during run time.

Path controls and indicators work similarly to string controls and
indicators, but LabVIEW formats the path using the standard syntax for the
platform you are using.

Array, Matrix, and Cluster Controls and Indicators

Use the array, matrix, and cluster controls and indicators located on the
Array, Matrix & Cluster and Classic Array, Matrix & Cluster palettes
to create arrays, matrices, and clusters of other controls and indicators.
Arrays group data elements of the same type. Clusters group data elements
of mixed types. Matrices group rows or columns of real or complex scalar
data for some math operations, such as linear algebra operations.

Refer to the Grouping Data with Arrays and Clusters section of Chapter 9,
Grouping Data Using Strings, Arrays, and Clusters, for more information
about arrays and clusters.

Listhoxes, Tree Controls, and Tahles

Use the listbox controls located on the List & Table and Classic List &
Table palettes to give users a list of items from which to select.

Listboxes

You can configure listboxes to accept single or multiple selections. Use the
multicolumn listbox to display more information about each item, such as
the size of the item and the date it was created.

Tree Controls

Use the tree control to give users a hierarchical list of items from which to
select. You organize the items you enter in the tree control into groups of
items, or nodes. Click the expand symbol next to a node to expand it and
display all the items in that node. You also click the symbol next to the node
to collapse the node.

© National Instruments Corporation 4-7 LabVIEW Fundamentals

Chapter 4 Building the Front Panel

@ Note You can create and edit tree controls only in the LabVIEW Full and Professional
Development Systems. If a VI contains a tree control, you can run the VI in all LabVIEW
packages, but you cannot configure the control in the Base Package.

Refer to the Directory Hierarchy in Tree Control VI in the labview\
examples\general\controls\Directory Tree Control.llb for
an example of using a tree control.

Tables
Use the table control to create a table on the front panel.

Refer to the Tables section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about using table controls.

Ring and Enumerated Type Controls and Indicators

LabVIEW Fundamentals

Use the ring and enumerated type controls and indicators located on the
Ring & Enum and Classic Ring & Enum palettes to create a list of strings
you can cycle through.

Ring Controls

Ring controls are numeric objects that associate numeric values with
strings or pictures. Ring controls appear as pull-down menus that users can
cycle through to make selections.

Ring controls are useful for selecting mutually exclusive items, such as
trigger modes. For example, use a ring control for users to select from
continuous, single, and external triggering.

Enumerated Type Controls

Use enumerated type controls to give users a list of items from which to
select. An enumerated type control, or enum, is similar to a text or menu
ring control. However, the data type of an enumerated type control includes
information about the numeric values and the string labels in the control.
The data type of a ring control is numeric.

4-8 ni.com

Chapter 4 Building the Front Panel

Container Controls

Use the container controls located on the Containers and the Classic
Containers palettes to group controls and indicators or to display the front
panel of another VI on the front panel of the current VI. (Windows) You also
can use container controls to display .NET and ActiveX objects on the front
panel.

Refer to the .NET and ActiveX Controls (Windows) section of this chapter
for more information about .NET and ActiveX controls.

Tah Controls

Use tab controls to overlap front panel controls and indicators in a smaller
area. A tab control consists of pages and tabs. Place front panel objects on
each page of a tab control and use the tab as the selector for displaying
different pages.

Tab controls are useful when you have several front panel objects that are
used together or during a specific phase of operation. For example, you
might have a VI that requires the user to first configure several settings
before a test can start, then allows the user to modify aspects of the test as
it progresses, and finally allows the user to display and store only pertinent
data.

On the block diagram, the tab control is an enumerated type control by
default. Terminals for controls and indicators placed on the tab control
appear as any other block diagram terminal.

Refer to the Enumerated Type Controls section of this chapter for more
information about enumerated type controls.

Subpanel Controls

Use the subpanel control to display the front panel of another VI on the
front panel of the current VI. For example, you can use a subpanel control
to design a user interface that behaves like a wizard. Place the Back and
Next buttons on the front panel of the top-level VI and use a subpanel
control to load different front panels for each step of the wizard.

@ Note You can create and edit subpanel controls only in the LabVIEW Full and

Professional Development Systems. If a VI contains a subpanel control, you can run the VI
in all LabVIEW packages, but you cannot configure the control in the Base Package.

© National Instruments Corporation 4-9 LabVIEW Fundamentals

Chapter 4 Building the Front Panel

Refer to the labview\examples\general\controls\subpanel.llb
for examples of using subpanel controls.

1/0 Name Controls and Indicators

Use the I/O name controls and indicators on the I/O and Classic I/O
palettes to pass DAQ channel names, VISA resource names, and IVI
logical names you configure to I/O VIs to communicate with an instrument
or a DAQ device.

I/0 name constants are located on the Functions palette. A constant is a
terminal on the block diagram that supplies fixed data values to the block
diagram.

@ Note All I/O name controls or constants are available on all platforms. This allows you to
develop I/0O VIs on any platform that can communicate with devices that are platform
specific. However, if you try to run a VI with a platform-specific I/O control on a platform
that does not support that device, you will receive an error.

LabVIEW Fundamentals

(Windows) Use Measurement & Automation Explorer, available from the
Tools menu, to configure DAQ channel names, VISA resource names, and
IVI logical names.

(Mac 0S and Linux) Use the configuration utilities for your instrument to
configure VISA resource names and I'VI logical names. Refer to the
documentation for your instrument for more information about the
configuration utilities.

Waveform Control

Use the waveform control to manipulate individual data elements of a
waveform. The waveform control carries the data, start time, and delta ¢ of
a waveform.

Refer to the Waveform Data Type section of Chapter 10, Graphs and
Charts, for more information about the waveform data type.

Digital Waveform Control

Use the digital waveform control to manipulate the individual elements of
a digital waveform.

Refer to the Digital Waveform Data Type section of Chapter 10, Graphs
and Charts, for more information about the digital waveform data type.

4-10 ni.com

Chapter 4 Building the Front Panel

Digital Data Control

The digital data control displays digital data arranged in rows and columns.
Use the digital data control to build digital waveforms or to display digital
data extracted from a digital waveform. Wire the digital waveform data
control to a digital data indicator to view the samples and signals of a digital
waveform.

References to Objects or Applications

Use the reference number controls located on the Refnum and Classic
Refnum palettes to work with files, directories, devices, and network
connections. Use the control refnum to pass front panel object information
to subVls.

A reference number, or refnum, is a unique identifier for an object, such as
a file, device, or network connection.When you open a file, device, or
network connection, LabVIEW creates a refnum associated with that file,
device, or network connection. All operations you perform on open files,
devices, or network connections use the refnums to identify each object.
Use a refnum control to pass a refnum into or out of a VI. For example, use
a refnum control to modify the contents of the file that a refnum is
referencing without closing and reopening the file.

Because a refnum is a temporary pointer to an open object, it is valid only
for the period during which the object is open. If you close the object,
LabVIEW disassociates the refnum with the object, and the refnum
becomes obsolete. If you open the object again, LabVIEW creates a new
refnum that is different from the first refnum. LabVIEW allocates memory
for an object that is associated with a refnum. Close the refnum to release
the object from memory.

LabVIEW remembers information associated with each refnum, such as
the current location for reading from or writing to the object and the degree
of user access, so you can perform concurrent but independent operations
on a single object. If a VI opens an object multiple times, each open
operation returns a different refnum. LabVIEW automatically closes
refnums for you when a VI finishes running, but it is a good programming
practice to close refnums as soon as you are finished with them to most
efficiently use memory and other resources. Close refnums in the opposite
order that you opened them. For example, if you obtain a refnum to object
A and invoke a method on object A to obtain a refnum to object B, close
the refnum to object B first and then close the refnum to object A.

© National Instruments Corporation 4-11 LabVIEW Fundamentals

Chapter 4 Building the Front Panel

.NET and ActiveX Controls (Windows)

Use the .NET and ActiveX controls located on the NET & ActiveX palette
to manipulate common .NET or ActiveX controls. You can add additional
.NET or ActiveX controls to this palette for later use. Select Tools».NET
& ActiveX»Add .NET Controls to Palette or Tools».NET & ActiveX»
Add ActiveX Controls to Palette to convert a set of NET or ActiveX
controls, respectively, to custom controls and add them to the .NET &
ActiveX palette.

@ Note Creating and communicating with .NET objects requires the .NET Framework 1.1
Service Pack 1 or later. National Instruments also strongly recommends that you use .NET
objects only in LabVIEW projects.

Configuring Front Panel Objects

LabVIEW Fundamentals

Use Properties dialog boxes or shortcut menus to configure how controls
and indicators appear or behave on the front panel. Use Properties dialog
boxes when you want to configure a front panel control or indicator using
a dialog box that includes context help and in which you can set several
properties at the same time for an object. Use shortcut menus to quickly
configure common control and indicator properties. The options available
in Properties dialog boxes and shortcut menus differ for different front
panel objects. Any option you set using a shortcut menu is reflected in the
Properties dialog box, and any option you set using the Properties dialog
box is reflected in the shortcut menu.

Right-click a control or indicator on the front panel and select Properties
from the shortcut menu to access the Properties dialog box for that object.
You cannot access Properties dialog boxes for a control or indicator while
a VIruns.

You also can create a custom control or indicator to extend the available
set of front panel objects. Right-click the control and select Advanced»
Customize from the shortcut menu to customize a control or indicator.
You can save a custom control or indicator you created in a directory or
LLB and use the custom control or indicator on other front panels.

4-12 ni.com

Chapter 4 Building the Front Panel

Showing and Hiding Optional Elements

Front panel controls and indicators have optional elements you can show or
hide, such as labels, captions, and digital displays. Set the visible elements
for the control or indicator on the Appearance page of the Properties
dialog box for the front panel object. You also can set the visible elements
by right-clicking an object, selecting Visible Items from the shortcut menu,
and selecting among the available options.

Changing Controls to Indicators and Indicators to Controls

LabVIEW initially configures objects in the Controls palette as controls or
indicators based on their typical use. For example, if you place a toggle
switch on the front panel, it appears as a control because a toggle switch is
usually an input mechanism. If you place an LED on the front panel, it
appears as an indicator because an LED is usually an output device.

Some palettes contain a control and an indicator for the same type or class
of object. For example, the Numeric palette contains a numeric control and
a numeric indicator because you can have a numeric input or a numeric
output.

You can change a control to an indicator by right-clicking the object and
selecting Change to Indicator from the shortcut menu, and you can
change an indicator to a control by right-clicking the object and selecting
Change to Control from the shortcut menu.

Replacing Front Panel Objects

You can replace a front panel object with a different control or indicator.

When you right-click an object and select Replace from the shortcut menu,
atemporary Controls palette appears. Select a control or indicator from the
temporary Controls palette to replace the current object on the front panel.

Configuring the Front Panel

You can customize the front panel by changing the color of front panel
objects, by aligning and distributing front panel objects, and so on.

© National Instruments Corporation 4-13 LabVIEW Fundamentals

Chapter 4 Building the Front Panel

Coloring Objects

You can change the color of many objects but not all of them. You can
change the color of most front panel objects and the front panel and block
diagram workspaces. You cannot change the color of system controls and
indicators because these objects appear in the colors you have set up for
your system.

Use the Coloring tool to right-click an object or workspace to change the
color of front panel objects or the front panel and block diagram
workspaces. You also can change the default colors for some objects by
selecting Tools»Options and selecting Colors from the Category list.

Color can distract the user from important information so use color
logically, sparingly, and consistently, if at all.

Aligning and Distributing Objects

Select Edit»Enable Panel Grid Alignment to enable the grid alignment
on the front panel and align objects as you place them. Select Edit»Disable
Panel Grid Alignment to disable the grid alignment and use the visible
grid to align objects manually. You also can press the <Ctrl-#> keys to
enable or disable the grid alignment. On French keyboards, press the
<Ctrl-"> keys.

(Mac 0S) Press the <Command-*> keys. (Linux) Press the <Alt-#> keys.
You also can use the alignment grid on the block diagram.

Select Tools»Options and select Alignment Grid from the Category list
to hide or customize the grid.

To align objects after you place them, select the objects and select the Align
Objects pull-down menu on the toolbar or select Edit»Align Items. To
space objects evenly, select the objects and select the Distribute Objects
pull-down menu on the toolbar or select Edit»Distribute Items.

Grouping and Locking Objects

LabVIEW Fundamentals

Use the Positioning tool to select the front panel objects you want to group
and lock together. Click the Reorder button on the toolbar and select
Group or Lock from the pull-down menu. Grouped objects maintain their
relative arrangement and size when you use the Positioning tool to move

4-14 ni.com

Chapter 4 Building the Front Panel

and resize them. Locked objects maintain their location on the front panel
and you cannot delete them until you unlock them. You can set objects to
be grouped and locked at the same time. Tools other than the Positioning
tool work normally with grouped or locked objects.

Resizing Objects

You can change the size of most front panel objects. When you move the
Positioning tool over a resizable object, resizing handles or circles appear
at the points where you can resize the object. When you resize an object,

the font size remains the same. Resizing a group of objects resizes all the
objects within the group.

Some objects change size only horizontally or vertically when you resize

them, such as digital numeric controls and indicators. Others keep the same
proportions when you resize them, such as knobs. The Positioning cursor

appears the same, but the dashed border that surrounds the object moves in
only one direction.

You can manually restrict the growth direction when you resize an object.
To restrict the growth vertically or horizontally or to maintain the current
proportions of the object, press the <Shift> key while you click and drag
the resizing handles or circles. To resize an object around its center point,
press the <Ctrl> key while you click and drag the resizing handles or
circles.

(Mac 08) Press the <Option> key. (Linux) Press the <Alt> key.

To resize multiple objects to the same size, select the objects and select the
Resize Objects pull-down menu on the toolbar. You can resize all the
selected objects to the width or height of the largest or smallest object, and
you can resize all the selected objects to a specific size in pixels.

Adding Space to the Front Panel without Resizing the Window

You can add space to the front panel without resizing the window. To
increase the space between crowded or tightly grouped objects, press the
<Ctrl> key and use the Positioning tool to click the front panel workspace.
While holding the key combination, drag out a region the size you want to
msert.

(Mac 0S) Press the <Option> key. (Linux) Press the <Alt> key.

A rectangle marked by a dashed border defines where space will be
inserted. Release the mouse button and the key to add the space.

© National Instruments Corporation 4-15 LabVIEW Fundamentals

Chapter 4 Building the Front Panel

Labeling

Use labels to identify objects on the front panel and block diagram.

LabVIEW includes two kinds of labels—owned labels and free labels.
Owned labels belong to and move with a particular object and annotate that
object only. You can move an owned label independently, but when you
move the object that owns the label, the label moves with the object. You
can hide owned labels, but you cannot copy or delete them independently
of their owners. You can display a separate owned label called a unit label
for numeric controls and indicators by right-clicking the numeric control or
indicator and selecting Visible Items»Unit Label from the shortcut menu.

Free labels are not attached to any object, and you can create, move, rotate,
or delete them independently. Use them to annotate front panels and block
diagrams.

Free labels are useful for documenting code on the block diagram and for
listing user instructions on the front panel. Double-click an open space or
use the Labeling tool to create free labels or to edit either type of label.

Text Characteristics

LabVIEW Fundamentals

LabVIEW uses fonts already installed on your computer. Use the Text
Settings pull-down menu on the toolbar to change the attributes of text.

The Text Settings pull-down menu contains the following built-in fonts:

¢ Application Font—Default font used for Controls and Functions
palettes and text in new controls

¢ System Font—Used for menus

¢ Dialog Font—Used for text in dialog boxes

If you select objects or text before you make a selection from the Text
Settings pull-down menu, the changes apply to everything you select. If
you select nothing, the changes apply to the default font. Changing the
default font does not change the font of existing labels. It affects only those
labels you create from that point on.

When you transfer a VI that contains built-in fonts to another platform, the
fonts correspond as closely as possible.

The Text Settings pull-down menu also has Size, Style, Justify, and Color
submenu items.

4-16 ni.com

Chapter 4 Building the Front Panel

Designing User Interfaces

If a VI serves as a user interface or a dialog box, front panel appearance and
layout are important. Design the front panel so users can easily identify
what actions to perform. You can design front panels that look similar to
instruments or other devices.

Using Front Panel Controls and Indicators

Controls and indicators are the main components of the front panel. When
you design the front panel, consider how users interact with the VI and
group controls and indicators logically. If several controls are related, add a
decorative border around them or put them in a cluster.Use the decorations
located on the Decorations palette to group or separate objects on a front
panel with boxes, lines, or arrows. These objects are for decoration only
and do not display data.

Designing Dialog Boxes

Select File» VI Properties and select Window Appearance from the
Category pull-down menu to hide the menu bar and scroll bars and to
create VIs that look and behave like standard dialog boxes for each
platform.

If a VI contains consecutive dialog boxes that appear in the same screen
location, organize them so that the buttons in the first dialog box do not
directly line up with the buttons in the next dialog box. Users might
double-click a button in the first dialog box and unknowingly click a button
in the subsequent dialog box.

Use the system controls located on the System palette in dialog boxes you
create.

© National Instruments Corporation 4-17 LabVIEW Fundamentals

Building the Block Diagram

After you build the front panel, you add code using graphical
representations of functions to control the front panel objects. The block
diagram contains this graphical source code, also known as G code or block
diagram code.

Block Diagram Objects

Objects on the block diagram include terminals and nodes. You build block
diagrams by connecting the objects with wires. The color and symbol of
each terminal indicate the data type of the corresponding control or
indicator. Constants are terminals on the block diagram that supply fixed
data values to the block diagram.

Block Diagram Terminals

Front panel objects appear as terminals on the block diagram. Double-click
ablock diagram terminal to highlight the corresponding control or indicator
on the front panel.

Terminals are entry and exit ports that exchange information between the
front panel and block diagram. Data values you enter into the front panel
controls enter the block diagram through the control terminals. During
execution, the output data values flow to the indicator terminals, where they
exit the block diagram, reenter the front panel, and appear in front panel
indicators.

LabVIEW has control and indicator terminals, node terminals, constants,
and specialized terminals on structures. You use wires to connect terminals
and pass data to other terminals. Right-click a block diagram object and
select Visible Items»Terminals from the shortcut menu to view the
terminals. Right-click the object and select Visible Items»Terminals
again to hide the terminals. This shortcut menu item is not available for
expandable VIs and functions.

You can configure front panel controls or indicators to appear as icon or
data type terminals on the block diagram. By default, front panel objects

© National Instruments Corporation 5-1 LabVIEW Fundamentals

Chapter 5 Building the Block Diagram

appear as icon terminals. For example, a knob icon terminal, shown as
follows, represents a knob control on the front panel.

The DBL at the bottom of the terminal represents a data type of
double-precision, floating-point numeric. A DBL terminal, shown as
follows, represents a double-precision, floating-point numeric control.

Right-click a terminal and remove the checkmark next to the View As Icon
shortcut menu item to display the data type for the terminal. Use icon
terminals to display the types of front panel objects on the block diagram,
in addition to the data types of the front panel objects. Use data type
terminals to conserve space on the block diagram.

@ Note Icon terminals are larger than data type terminals, so you might unintentionally
obscure other block diagram objects when you convert a data type terminal to an icon

terminal.

LabVIEW Fundamentals

Control terminals have a thicker border than indicator terminals. Also,
arrows appear on front panel terminals to indicate whether the terminal is a
control or an indicator. An arrow appears on the right if the terminal is a
control, and an arrow appears on the left if the terminal is an indicator.

Control and Indicator Data Types

Common control and indicator data types include floating-point numeric,
integer numeric, time stamp, enumerated, Boolean, string, array, cluster,
path, dynamic, waveform, refnum, and I/O name. Refer to the LabVIEW
Help for the complete list of control and indicator data types with their
symbols and uses.

The color and symbol of each terminal indicate the data type of the
corresponding control or indicator. Many data types have a corresponding
set of functions that can manipulate the data, such as the String functions
on the String palette that correspond to the string data type.

5-2 ni.com

Chapter 5 Building the Block Diagram

Symbolic Numeric Values

Undefined or unexpected data invalidate all subsequent operations.
Floating-point operations return the following two symbolic values that
indicate faulty computations or meaningless results:

* NaN (not a number) represents a floating-point value that invalid
operations produce, such as taking the square root of a negative
number.

* Inf (infinity) represents a floating-point value outside of the range for
that data type. For example, dividing 1 by zero produces Inf.

LabVIEW can return +Inf or -Inf. +Inf indicates the largest value
possible for the data type and -Inf indicates the smallest value
possible for the data type.

LabVIEW does not check for overflow or underflow conditions on integer
values.

Constants

Constants are terminals on the block diagram that supply fixed data values
to the block diagram. Universal constants are constants with fixed values,
such as pi (m) and infinity (o). User-defined constants are constants you
define and edit before you run a VL.

Most constants are located at the bottom or top of their palettes.

Create a user-defined constant by right-clicking an input terminal of a VI
or function and selecting Create»Constant from the shortcut menu.

Use the Operating or Labeling tool to click the constant and edit its value.
If automatic tool selection is enabled, double-click the constant to switch to
the Labeling tool and edit the value.

Block Diagram Nodes

Nodes are objects on the block diagram that have inputs and/or outputs and
perform operations when a VI runs. They are analogous to statements,
operators, functions, and subroutines in text-based programming
languages. LabVIEW includes the following types of nodes:

* Functions—Built-in execution elements, comparable to an operator,
function, or statement.

e SubVIs—VIs used on the block diagram of another VI, comparable to
subroutines.

© National Instruments Corporation 5-3 LabVIEW Fundamentals

Chapter 5 Building the Block Diagram

Refer to the Creating SubVlIs section of Chapter 7, Creating VIs and
SubVlIs, for more information about using subVIs on the block
diagram.

* Express VIs—SubVIs designed to aid in common measurement tasks.
You configure an Express VI using a configuration dialog box.

Refer to the Express VIs section of this chapter for more information
about using Express VIs.

¢ Structures—Execution control elements, such as For Loops, While
Loops, Case structures, Flat and Stacked Sequence structures, Timed
structures, and Event structures.

Refer to Chapter 8, Loops and Structures, for more information about
using structures.

Refer to the LabVIEW Help for the complete list of block diagram nodes.

Polymorphic Vis and Functions

Polymorphic VIs and functions can adjust to input data of different data
types. Most LabVIEW structures are polymorphic, as are some VIs and
functions.

Functions are polymorphic to varying degrees—none, some, or all of their
inputs can be polymorphic. Some function inputs accept numeric values or
Boolean values. Some accept numeric values or strings. Some accept not
only scalar numeric values, but also arrays of numeric values, clusters of
numeric values, arrays of clusters of numeric values, and so on. Some
accept only one-dimensional arrays, although the array elements can be of
any type. Some functions accept all types of data, including complex
numeric values.

Refer to the Grouping Data with Arrays and Clusters section of Chapter 9,
Grouping Data Using Strings, Arrays, and Clusters, for more information
about arrays and clusters.

Functions Overview

LabVIEW Fundamentals

Functions are the essential operating elements of LabVIEW. Function
icons on the Functions palette have pale yellow backgrounds and black
foregrounds. Functions do not have front panels or block diagrams but do
have connector panes. You cannot open or edit a function.

5-4 ni.com

Chapter 5 Building the Block Diagram

Adding Terminals to Functions

You can change the number of terminals for some functions. For example,
to build an array with 10 elements, you must add 10 terminals to the Build
Array function.

You can add terminals to functions by using the Positioning tool to drag the
top or bottom borders of the function up or down, respectively. You also can
use the Positioning tool to remove terminals from functions, but you cannot
remove a terminal that is already wired. You must first delete the existing
wire to remove the terminal.

Refer to the Using Wires to Link Block Diagram Objects section of this
chapter for more information about wiring objects.

Built-in Vis and Functions

The Functions palette also includes the VIs that ship with LabVIEW. Use
these VIs and functions as subVIs in an application to reduce development
time. Click the View button on the Functions palette and select Always
Visible Categories»Show All Categories from the shortcut menu to
display all categories on the Functions palette.

Refer to the Using Built-In VIs and Functions section of Chapter 7,
Creating VIs and SubVls, for more information about using the built-in VIs
and functions.

Refer to the LabVIEW Help for detailed information about all built-in VIs
and functions.

Express Vis

Use the Express VIs for common measurement tasks. Express VIs are
nodes that require minimal wiring because you configure them with dialog
boxes. The inputs and outputs for the Express VI depend on how you
configure the VI. Express VIs appear on the block diagram as expandable
nodes with icons surrounded by a blue field.

Refer to the Getting Started with LabVIEW manual for more information
about using Express VIs.

© National Instruments Corporation 5-5 LabVIEW Fundamentals

Chapter 5 Building the Block Diagram

Using Wires to Link Block Diagram Objects

You transfer data among block diagram objects through wires. Each wire
has a single data source, but you can wire it to many VIs and functions that
read the data, similar to passing required parameters in text-based
programming languages. You must wire all required block diagram
terminals. Otherwise, the VI is broken and will not run. Display the
Context Help window to see which terminals a block diagram node
requires. The labels of required terminals appear bold in the Context Help
window.

Refer to the Correcting Broken Vs section of Chapter 6, Running and
Debugging Vls, for more information about broken VlIs.

Wire Appearance and Structure

LabVIEW Fundamentals

Wires are different colors, styles, and thicknesses depending on their data
types, similar to how the color and symbol of a terminal indicate the data
type of the corresponding control or indicator. A broken wire appears as a
dashed black line with a red X in the middle. Broken wires occur for a
variety of reasons, such as when you try to wire two objects with
incompatible data types. The arrows on either side of the red X on the
broken wire indicate the direction of the data flow, and the color of the
arrows indicate the data type of the data flowing through the wire.

Refer to the Control and Indicator Data Types section of this chapter for
more information about data types. Refer to the Block Diagram Data Flow
section of this chapter for more information about data flow.

Wire stubs are the truncated wires that appear next to unwired terminals
when you move the Wiring tool over a VI or function. They indicate the
data type of each terminal. A tip strip also appears, listing the name of the
terminal. After you wire a terminal, the wire stub for that terminal does not
appear when you move the Wiring tool over its node.

A wire segment is a single horizontal or vertical piece of wire. A bend in a
wire is where two segments join. The point at which two or more wire
segments join is a junction. A wire branch contains all the wire segments
from junction to junction, terminal to junction, or terminal to terminal if
there are no junctions in between. The following figure shows a wire
segment, bend, and junction.

5-6 ni.com

Wiring Objects

Chapter 5 Building the Block Diagram

el

zmpg A i>

@2@

‘1 Segment 2 Bend 3 Junction

Use the Wiring tool to manually connect the terminals on one block
diagram node to the terminals on another block diagram node. The cursor
point of the tool is the tip of the unwound wire spool. When you move the
Wiring tool over a terminal, the terminal blinks. When you move the
Wiring tool over a VI or function terminal, a tip strip also appears, listing
the name of the terminal. Wiring to the terminal might create a broken wire.
You must correct the broken wire before you can run the VL.

Refer to the Correcting Broken Wires section of this chapter for more
information about correcting broken wires.

Use the Context Help window to determine exactly where to connect
wires. When you move the cursor over a VI or function, the Context Help
window lists each terminal of the VI or function. The Context Help
window does not display terminals for expandable VIs and functions, such
as the Build Array function. Click the Show Optional Terminals and Full
Path button in the Context Help window to display the optional terminals
of the connector pane.

When you cross wires, a small gap appears in the first wire you drew to
indicate that the first wire is under the second wire.

Bending Wires

While you are wiring a terminal, bend the wire at a 90 degree angle once
by moving the cursor in either a vertical or horizontal direction. To bend a
wire in multiple directions, click the mouse button to set the wire and then
move the cursor in the new direction. You can repeatedly set the wire and
move it in new directions.

© National Instruments Corporation 5-7 LabVIEW Fundamentals

Chapter 5 Building the Block Diagram

Undoing Wires

To undo the last point where you set the wire, press the <Shift> key and
click anywhere on the block diagram. To abort the entire wiring operation,
right-click anywhere on the block diagram.

(Mac 08) Press the <Option> key and click. (Linux) Click the middle mouse
button.

Automatically Wiring Objects

As you move a selected object close to other objects on the block diagram,
LabVIEW draws temporary wires to show you valid connections. When
you release the mouse button to place the object on the block diagram,
LabVIEW automatically connects the wires. You also can automatically
wire objects already on the block diagram. LabVIEW connects the
terminals that best match and does not connect the terminals that do not
match.

Toggle automatic wiring by pressing the space bar while you move an
object using the Positioning tool.

Selecting Wires

Select wires by using the Positioning tool to single-click, double-click, or
triple-click them. Single-clicking a wire selects one segment of the wire.
Double-clicking a wire selects a wire branch. Triple-clicking a wire selects
the entire wire.

Correcting Broken Wires

LabVIEW Fundamentals

A broken wire appears as a dashed black line with a red X in the middle.
Broken wires occur for a variety of reasons, such as when you try to wire
two objects with incompatible data types. Move the Wiring tool over a
broken wire to display a tip strip that describes why the wire is broken. This
information also appears in the Context Help window when you move the
Wiring tool over a broken wire. Right-click the wire and select List Errors
from the shortcut menu to display the Error list window. Click the Help
button to display more information about why the wire is broken.

Triple-click the wire with the Positioning tool and press the <Delete> key
to remove a broken wire. You also can right-click the wire and select from
shortcut menu options such as Delete Wire Branch, Create Wire Branch,
Remove Loose Ends, Clean Up Wire, Change to Control, Change to

5-8 ni.com

Chapter 5 Building the Block Diagram

Indicator, Enable Indexing at Source, and Disable Indexing at Source.
These options change depending on the reason for the broken wire.

You can remove all broken wires by selecting Edit>Remove Broken
Wires or by pressing the <Ctrl-B> keys. (Mac 08) Press the <Command-B>
keys. (Linux) Press the <Meta-B> keys.

A Caution Use caution when removing all broken wires. Sometimes a wire appears broken
because you are not finished wiring the block diagram.

Coercion Dots

Coercion dots appear on block diagram nodes to alert you that you wired
two different numeric data types together. The dot means that LabVIEW
converted the value passed into the node to a different representation. For
example, the Add function expects two double-precision, floating-point
inputs. If you change one of those inputs to an integer, a coercion dot
appears on the Add function, as shown in the following figure.

Coercion dots can cause a VI to use more memory and increase its run time.
Try to keep data types consistent in the VIs you create.

Block Diagram Data Flow

LabVIEW follows a dataflow model for running VIs. A block diagram
node executes when it receives all required inputs. When a node executes,
it produces output data and passes the data to the next node in the dataflow
path. The movement of data through the nodes determines the execution
order of the VIs and functions on the block diagram.

© National Instruments Corporation 5-9 LabVIEW Fundamentals

Chapter 5 Building the Block Diagram

Visual Basic, C++, JAVA, and most other text-based programming
languages follow a control flow model of program execution. In control
flow, the sequential order of program elements determines the execution
order of a program.

In LabVIEW, the flow of data rather than the sequential order of commands
determines the execution order of block diagram elements. Therefore, you
can create block diagrams that have simultaneous operations. For example,
you can run two For Loops simultaneously and display the results on the
front panel, as shown in the following block diagram.

of data poinks
N For Loop

kest resulks
3
5|

L)

Digital U3
m 1Chan 15amp

—N For Loop 2

erified resulks

I

"5 i

Digital U3
[[] [ichan i5amp

Data Dependency and Artificial Data Dependency

The control flow model of execution is instruction driven. Dataflow
execution is data driven, or data dependent. A node that receives data from
another node always executes after the other node completes execution.

LabVIEW Fundamentals 5-10 ni.com

Chapter 5 Building the Block Diagram

Block diagram nodes not connected by wires can execute in any order. You
can use flow-through parameters to control execution order when natural
data dependency does not exist. You can use a sequence structure to control
execution order when flow-through parameters are not available.

Refer to the Flow-Through Parameters section of this chapter for more
information about flow-through parameters. Refer to the Sequence
Structures section of Chapter 8, Loops and Structures, for more
information about sequence structures.

You also can create an artificial data dependency, in which the receiving
node does not actually use the data received. Instead, the receiving node
uses the arrival of data to trigger its execution. Refer to the Timing
Template (data dep) VIin the labview\examples\general\
structs.11b for an example of using artificial data dependency.

Missing Data Dependencies

Do not assume left-to-right or top-to-bottom execution when no data
dependency exists. Make sure you explicitly define the sequence of events
when necessary by wiring the dataflow.

In the following block diagram, no dependency exists between the Read
from Binary File function and the Close File function because the Read
from Binary File function is not wired to the Close File function. This
example might not work as expected because there is no way to determine
which function runs first. If the Close File function runs first, the Read from
Binary File function does not work.

OpenfCreate/Replace File] | [Read From Binary File]

(= = . Close File |
E k) =

ol

© National Instruments Corporation 5-11 LabVIEW Fundamentals

Chapter 5 Building the Block Diagram

The following block diagram establishes a dependency by wiring an output
of the Read from Binary File function to the Close File function. The Close
File function does not run until it receives the output of the Read from
Binary File function.

openjCreate/Replace File] [Read from Binary File]|

=21 .
'D g I_Clu:use File
E i)

0

Flow-Through Parameters

Flow-through parameters, typically a refnum or error cluster, return the
same value as the corresponding input parameter. Use these parameters to
control execution order when natural data dependency does not exist. By
wiring the flow-through output of the first node you want to execute to the
corresponding input of the next node you want to execute, you create an
artificial data dependency. Without these flow-through parameters, you
must use sequence structures to ensure that data operations take place in the
order you want.

Refer to the Handling Errors section of Chapter 6, Running and Debugging
Vs, for more information about error I/O. Refer to the Sequence Structures
section of Chapter 8, Loops and Structures, for more information about
sequence structures.

Data Flow and Managing Memory

LabVIEW Fundamentals

Dataflow execution makes managing memory easier than the control flow
model of execution. In LabVIEW, you do not allocate memory for
variables or assign values to them. Instead, you create a block diagram with
wires that represent the transition of data.

VIs and functions that generate data automatically allocate the memory for
that data. When the VI or function no longer uses the data, LabVIEW
deallocates the associated memory. When you add new data to an array or
a string, LabVIEW allocates enough memory to manage the new data.

5-12 ni.com

Chapter 5 Building the Block Diagram

Designing the Block Diagram

Use the following guidelines to design block diagrams:

© National Instruments Corporation

Use a left-to-right and top-to-bottom layout. Although the positions of
block diagram elements do not determine execution order, avoid
wiring from right to left to keep the block diagram organized and easy
to understand. Only wires and structures determine execution order.

Avoid creating a block diagram that occupies more than one or two
screens. If a block diagram becomes large and complex, it can be
difficult to understand or debug.

Decide if you can reuse some components of the block diagram in
other VIs or if a section of the block diagram works together as a
logical component. If so, divide the block diagram into subVIs that
perform specific tasks. Using subVIs helps you manage changes and
debug the block diagrams quickly.

Refer to the Creating SubVlIs section of Chapter 7, Creating VIs and
SubVlIs, for more information about subVIs.

Use the error handling VIs, functions, and parameters to manage
errors on the block diagram.

Refer to the Handling Errors section of Chapter 6, Running and
Debugging VlIs, for more information about handling errors.

Avoid wiring under a structure border or between overlapped objects,
because LabVIEW might hide some segments of the resulting wire.

Avoid placing objects on top of wires. Placing a terminal or icon on top
of a wire makes it appear as if a connection exists when it does not.

Use free labels to document code on the block diagram.

Refer to the Labeling section of Chapter 4, Building the Front Panel,
for more information about using free labels.

5-13 LabVIEW Fundamentals

Running and Debugging Vis

To run a VI, you must wire all the subVlIs, functions, and structures with
the correct data types for the terminals. Sometimes a VI produces data or
runs in a way you do not expect. You can use LabVIEW to identify
problems with block diagram organization or with the data passing through
the block diagram.

Running Vs

Running a VI executes the operation for which you designed the VI. You
canrun a VIif the Run button on the toolbar appears as a solid white arrow,
shown as follows.

&

The solid white arrow also indicates you can use the VI as a subVI if you
create a connector pane for the VI.

Refer to the Building the Connector Pane section of Chapter 7, Creating
VIs and SubVls, for more information about creating connector panes.

A VI runs when you click the Run or Run Continuously buttons or the
single-stepping buttons on the block diagram toolbar. While the VI runs,
the Run button changes to a darkened arrow, shown as follows, to indicate
that the VI is running.

II*

You cannot edit a VI while the VI runs.

Clicking the Run button runs the VI once. The VI stops when the VI
completes its data flow. Clicking the Run Continuously button, shown
as follows, runs the VI continuously until you stop it manually.

&=

© National Instruments Corporation 6-1 LabVIEW Fundamentals

Chapter 6 Running and Debugging Vs

Clicking the single-stepping buttons runs the VI in incremental steps.

Refer to the Single-Stepping section of this chapter for more information
about using the single-stepping buttons to debug a VI.

Correcting Broken Vis

If a VI does not run, it is a broken, or nonexecutable, VI. The Run button
appears broken, shown as follows, when the VI you are creating or editing
contains errors.

5

If the button still appears broken when you finish wiring the block diagram,
the VI is broken and cannot run.

Finding Causes for Broken Vls

LabVIEW Fundamentals

Warnings do not prevent you from running a VI. They are designed to help
you avoid potential problems in VIs. Errors, however, can break a VI. You
must resolve any errors before you can run the VL.

Click the broken Run button or select View»Error List to find out why a
V1 is broken. The Error list window lists all the errors. The Items with
errors section lists the names of all items in memory, such as VIs and
project libraries that have errors. If two or more items have the same name,
this section shows the specific application instance for each item. The
errors and warnings section lists the errors and warnings for the VI you
select in the Items with errors section. The Details section describes the
errors and in some cases recommends how to correct the errors. Click the
Help button to display a topic in the LabVIEW Help that describes the error
in detail and includes step-by-step instructions for correcting the error.

Click the Show Error button or double-click the error description to
highlight the area on the block diagram or front panel that contains the
erTor.

The toolbar includes the Warning button, shown as follows, if a VI
includes a warning and you placed a checkmark in the Show Warnings
checkbox in the Error list window.

i\

6-2 ni.com

Chapter 6 Running and Debugging Vs

Common Causes of Broken Vs

The following list contains common reasons why a VI is broken while you

edit it:

* The block diagram contains a broken wire because of a mismatch of
data types or a loose, unconnected end.

Refer to the Correcting Broken Wires section of Chapter 5, Building
the Block Diagram, for information about correcting broken wires.

* A required block diagram terminal is unwired.

Refer to the Using Wires to Link Block Diagram Objects section of
Chapter 5, Building the Block Diagram, for information about setting
required inputs and outputs.

* AsubVlisbroken or you edited its connector pane after you placed its
icon on the block diagram of the VI.

Refer to the Creating SubVls section of Chapter 7, Creating VIs and
SubVlIs, for information about subVIs.

Debugging Techniques

If a VI is not broken, but you get unexpected data, you can use several
techniques to identify and correct problems with the VI or the block
diagram data flow.

Execution Highlighting

View an animation of the execution of the block diagram by clicking the
Highlight Execution button, shown as follows.

@

Execution highlighting shows the movement of data on the block diagram
from one node to another using bubbles that move along the wires. Use
execution highlighting in conjunction with single-stepping to see how data
values move from node to node through a VI.

@ Note Execution highlighting greatly reduces the speed at which the VI runs.

If the error out cluster reports an error, the error value appears next to
error out with a red border. If no error occurs, OK appears next to error out
with a green border.

© National Instruments Corporation 6-3 LabVIEW Fundamentals

Chapter 6 Running and Debugging Vs

Single-Stepping

Probe Tool

Breakpoints

LabVIEW Fundamentals

Refer to the Error Clusters section of this chapter for more information
about error clusters.

Single-step through a VI to view each action of the VI on the block diagram
as the VI runs. The single-stepping buttons, shown as follows, affect
execution only in a VI or subVI in single-step mode.

kol @] [o3]

Step Into Step Over Step Out

Enter single-step mode by clicking the Step Over or Step Into button on
the block diagram toolbar. Move the cursor over the Step Over, Step Into,
or Step Out button to view a tip strip that describes the next step if you click
that button. You can single-step through subVIs or run them normally.

If you single-step through a VI with execution highlighting on, an
execution glyph, shown as follows, appears on the icons of the subVIs that
are currently running.

Pflll?
T

Use a generic probe to view the data that passes through a wire. Right-click
a wire and select Custom Probe»Generic Probe from the shortcut menu
to use the generic probe.

Use the Breakpoint tool, shown as follows, to place a breakpoint on a VI,
node, or wire on the block diagram and pause execution at that location.

When you set a breakpoint on a wire, execution pauses after data passes
through the wire. Place a breakpoint on the block diagram to pause
execution after all nodes on the block diagram execute.

6-4 ni.com

Chapter 6 Running and Debugging Vs

When a VI pauses at a breakpoint, LabVIEW brings the block diagram to
the front and uses a marquee to highlight the node or wire that contains the
breakpoint. When you move the cursor over an existing breakpoint, the
black area of the Breakpoint tool cursor appears white.

When you reach a breakpoint during execution, the VI pauses and the
Pause button appears red. You can take the following actions:

» Single-step through execution using the single-stepping buttons.
* Probe wires to check intermediate values.
* Change values of front panel controls.

* Click the Pause button to continue running to the next breakpoint or
until the VI finishes running.

LabVIEW saves breakpoints with a VI, but they are active only when
you run the VI. You can view all breakpoints by selecting Operate»
Breakpoints and clicking the Find button.

Handling Errors

No matter how confident you are in the VI you create, you cannot predict
every problem a user can encounter. Without a mechanism to check for
errors, you know only that the VI does not work properly. Error checking
tells you why and where errors occur.

When you perform any kind of input and output (I/O), consider the
possibility that errors might occur. Almost all I/O functions return error
information. Include error checking in VIs, especially for I/O operations
(file, serial, instrumentation, data acquisition, and communication), and
provide a mechanism to handle errors appropriately.

By default, LabVIEW automatically handles any error when a VI runs by
suspending execution, highlighting the subVI or function where the error
occurred, and displaying an error dialog box.

To disable automatic error handling for the current VI, select File»

VI Properties and select Execution from the Category pull-down menu.
To disable automatic error handling for any new, blank VIs you create,
select Tools»Options and select Block Diagram from the Category list.
To disable automatic error handling for a subVI or function within a VI,
wire its error out parameter to the error in parameter of another subVI or
function or to an error out indicator.

© National Instruments Corporation 6-5 LabVIEW Fundamentals

Chapter 6 Running and Debugging Vs

Error Clusters

LabVIEW Fundamentals

You can choose other error handling methods. For example, if an I/O VI on
the block diagram times out, you might not want the entire application to
stop and display an error dialog box. You also might want the VI to retry
for a certain period of time. In LabVIEW, you can make these error
handling decisions on the block diagram of the VI.

Use the LabVIEW error handling VIs and functions on the Dialog & User
Interface palette and the error in and error out parameters of most VIs
and functions to manage errors. For example, if LabVIEW encounters an
error, you can display the error message in different kinds of dialog boxes.
Use error handling in conjunction with the debugging tools to find and
manage errors.

VIs and functions return errors in one of two ways—with numeric error
codes or with an error cluster. Typically, functions use numeric error codes,
and VIs use an error cluster, usually with error inputs and outputs.

Error handling in LabVIEW follows the dataflow model. Just as data values
flow through a VI, so can error information. Wire the error information
from the beginning of the VI to the end. Include an error handler VI at the
end of the VI to determine if the VI ran without errors. Use the error in and
error out clusters in each VI you use or build to pass the error information
through the VI. The error clusters are flow-through parameters.

Refer to the Flow-Through Parameters section of Chapter 5, Building the
Block Diagram, for more information about flow-through parameters.

As the VI runs, LabVIEW tests for errors at each execution node. If
LabVIEW does not find any errors, the node executes normally. If
LabVIEW detects an error, the node passes the error to the next node
without executing that part of the code. The next node does the same thing,
and so on. At the end of the execution flow, LabVIEW reports the error.

The error in and error out clusters include the following components of
information:

e status is a Boolean value that reports TRUE if an error occurred.

e code is a 32-bit signed integer that identifies the error numerically. A
nonzero error code coupled with a status of FALSE signals a warning
rather than a error.

e source is a string that identifies where the error occurred.

6-6 ni.com

Chapter 6 Running and Debugging Vs

Some VIs, functions, and structures that accept Boolean data also recognize
an error cluster. For example, you can wire an error cluster to the Boolean
inputs of the Select, Quit LabVIEW, or Stop functions. If an error occurs,
the error cluster passes a TRUE value to the function.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about clusters.

Using While Loops for Error Handling

You can wire an error cluster to the conditional terminal of a While Loop
to stop the iteration of the While Loop. When you wire the error cluster to
the conditional terminal, only the TRUE or FALSE value of the status
parameter of the error cluster is passed to the terminal. When an error
occurs, the While Loop stops.

When an error cluster is wired to the conditional terminal, the shortcut
menu items Stop if True and Continue if True change to Stop on Error
and Continue while Error.

Refer to the While Loops section of Chapter 8, Loops and Structures, for
more information about using While Loops.

Using Case Structures for Error Handling

When you wire an error cluster to the selector terminal of a Case structure,
the case selector label displays two cases—Error and No Error—and the
border of the Case structure changes color—red for Error and green for
No Error. If an error occurs, the Case structure executes the Error
subdiagram.

Refer to the Case Structures section of Chapter 8, Loops and Structures, for
more information about using Case structures.

Use the SubVI with Error Handling template VI to create a VI with a Case
structure for error handling.

Refer to the LabVIEW VI Templates section of Chapter 1, Introduction to
LabVIEW, for more information about template VIs.

© National Instruments Corporation 6-7 LabVIEW Fundamentals

Creating VIs and SubVIs

A VI can serve as a user interface or as an operation you use frequently.
After you learn how to build a front panel and block diagram, you can
create your own VIs and subVIs and customize these Vls.

Searching for Examples

Before you build a new VI, consider searching for an example VI that
meets your needs by selecting Help»Find Examples to open the

NI Example Finder. If you cannot find an appropriate example VI, open
a template VI from the New dialog box and populate the template with
built-in VIs and functions from the Functions palette.

Refer to the LabVIEW VI Templates, Example VIs, and Tools section of
Chapter 1, Introduction to LabVIEW, for more information about example
VIs and template VIs.

Using Built-In Vis and Functions

LabVIEW includes built-in VIs and functions to help you build specific
applications, such as data acquisition VIs and functions, VIs that access
other VIs, VIs that communicate with other applications, and so on. You
can use these VIs as subVlIs in an application to reduce development time.
Before you build a new VI, consider searching the Functions palette for
similar VIs and functions and using an existing VI as the starting point for
the new VI.

Creating SubVis

After you build a VI, you can use it in another VI. A VI called from the
block diagram of another VI is called a subVI. You can reuse a subVI in
other VIs. To create a subVI, you need to build a connector pane and create
an icon.

© National Instruments Corporation 7-1 LabVIEW Fundamentals

Chapter 7 Creating Vis and SubVls

Creating an Icon

LabVIEW Fundamentals

A subVI node corresponds to a subroutine call in text-based programming
languages. The node is not the subVT itself, just as a subroutine call
statement in a program is not the subroutine itself. A block diagram that
contains several identical subVI nodes calls the same subVI several times.

The subVI controls and indicators receive data from and return data to the
block diagram of the calling VI. Click the Select a VI icon or text on the
Functions palette, navigate to and double-click a VI, and place the VI on a
block diagram to create a subVI call to that VI.

You can edit a subVI by using the Operating or Positioning tool to
double-click the subVI on the block diagram. When you save the subV1, the
changes affect all calls to the subVI, not just the current instance.

Every VI displays an icon, shown as follows, in the upper right corner of
the front panel and block diagram windows.

Anicon is a graphical representation of a VI. It can contain text, images, or
a combination of both. If you use a VI as a subVI, the icon identifies the
subVI on the block diagram of the VI.

The default icon contains a number that indicates how many new VIs you
have opened since launching LabVIEW. Create custom icons to replace the
default icon by right-clicking the icon in the upper right corner of the front
panel or block diagram and selecting Edit Icon from the shortcut menu or
by double-clicking the icon in the upper right corner of the front panel.

You also can drag a graphic from anywhere in your file system and drop it
in the upper right corner of the front panel or block diagram. LabVIEW
converts the graphic to a 32 x 32 pixel icon.

Refer to the National Instruments Web site at ni . com/info and enter the
info code expnr7 for standard graphics to use in a VI icon.

7-2 ni.com

Chapter 7 Creating Vls and SubVls

Building the Connector Pane

To use a VI as a subVI, you need to build a connector pane, shown as
follows.

The connector pane is a set of terminals that corresponds to the controls and
indicators of that VI, similar to the parameter list of a function call in
text-based programming languages. The connector pane defines the inputs
and outputs you can wire to the VI so you can use it as a subVI. A connector
pane receives data at its input terminals and passes the data to the block
diagram code through the front panel controls and receives the results at its
output terminals from the front panel indicators.

Define connections by assigning a front panel control or indicator to each
of the connector pane terminals. To define a connector pane, right-click the
icon in the upper right corner of the front panel and select Show Connector
from the shortcut menu to display the connector pane. The connector pane
appears in place of the icon. When you view the connector pane for the first
time, you see a connector pattern. You can select a different pattern by
right-clicking the connector pane and selecting Patterns from the shortcut
menu.

Each rectangle on the connector pane represents a terminal. Use the
rectangles to assign inputs and outputs. The default connector pane pattern
is 4 x 2 x 2 x 4. If you anticipate changes to the VI that would require a new
input or output, keep the default connector pane pattern to leave extra
terminals unassigned.

You can assign up to 28 terminals to a connector pane. If your front panel
contains more than 28 controls and indicators that you want to use
programmatically, group some of them into a cluster and assign the cluster
to a terminal on the connector pane.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about grouping data using
clusters.

Select a different terminal pattern for a VI by right-clicking the connector
pane and selecting Patterns from the shortcut menu. For example, you can
select a connector pane pattern with extra terminals. You can leave the extra

© National Instruments Corporation 7-3 LabVIEW Fundamentals

Chapter 7 Creating Vis and SubVls

terminals unconnected until you need them. This flexibility enables you to
make changes with minimal effect on the hierarchy of the VIs.

Creating SubVls from Sections of a VI

Convert a section of a VI into a subVI by using the Positioning tool to select
the section of the block diagram you want to reuse and selecting Edit»
Create SubVI. An icon for the new subVI replaces the selected section of
the block diagram. LabVIEW creates controls and indicators for the new
subV1, automatically configures the connector pane based on the number
of control and indicator terminals you selected, and wires the subVI to the
existing wires.

Creating a subVI from a selection is convenient but still requires careful
planning to create a logical hierarchy of VIs. Consider which objects to
include in the selection and avoid changing the functionality of the
resulting VI.

Designing SubVI Front Panels

Place the controls and indicators on the front panel as they appear in the
connector pane. Place the controls on the left of the front panel and the
indicators on the right. Place the error in clusters on the lower left of the
front panel and the error out clusters on the lower right.

Refer to the Building the Connector Pane section of this chapter for more
information about setting up a connector pane.

Viewing the Hierarchy of Vis

LabVIEW Fundamentals

The VI Hierarchy window displays a graphical representation of all open
LabVIEW projects and targets, as well as the calling hierarchy for all VIs
in memory, including type definitions and global variables. Select View»
VI Hierarchy to display the VI Hierarchy window. Use this window to
view the subVIs and other nodes that make up the VIs in memory and to
search the VI hierarchy.

Refer to the Project Explorer Window section of Chapter 3, LabVIEW
Environment, for more information about LabVIEW projects.

The VI Hierarchy window displays a top-level icon to represent the main
LabVIEW application instance, under which appear all open VIs that are
not part of a project or are not part of the application instance for a project.
If you add a project, the VI Hierarchy window also displays another

7-4 ni.com

Chapter 7 Creating Vls and SubVls

top-level icon to represent the project. Each target you add appears under
the project.

As you move the cursor over objects in the VI Hierarchy window,
LabVIEW displays the name of each VI in a tip strip. You can use the
Positioning tool to drag a VI from the VI Hierarchy window to the block
diagram to use the VI as a subVI in another VI. You also can select and
copy a node or several nodes to the clipboard and paste them on other block
diagrams. Double-click a VI in the VI Hierarchy window to display the
front panel of that VI.

A VI that contains subVIs has an arrow button on its bottom border. Click
this arrow button to show or hide subVIs. A red arrow button appears when
all subVls are hidden. A black arrow button appears when all subVls are
displayed.

Polymorphic Vis

Polymorphic VIs accept different data types for a single input or output
terminal. A polymorphic VI is a collection of VIs with the same connector
pane patterns. Each VI in the collection is an instance of the polymorphic
VL

For example, the Read Key VI is polymorphic. Its default value terminal
accepts Boolean; double-precision, floating-point numeric; 32-bit signed
integer numeric; path; string; or 32-bit unsigned integer numeric data.

For most polymorphic VlIs, the data types you wire to the inputs of the
polymorphic VI determine the instance to use. If the polymorphic VI does
not contain an instance compatible with that data type, a broken wire
appears. If the data types you wire to the polymorphic VI inputs do not
determine the instance to use, you must select the instance manually. If you
manually select an instance of a polymorphic VI, the VI no longer behaves
as a polymorphic VI because it accepts and returns only the data types of
the instance you select.

To select the instance manually, right-click the polymorphic VI, select
Select Type from the shortcut menu, and select the instance to use. You
also can use the Operating tool to click the polymorphic VI selector, shown
as follows, and select an instance from the shortcut menu.

© National Instruments Corporation 7-5 LabVIEW Fundamentals

Chapter 7 Creating Vis and SubVls

Right-click the polymorphic VI on the block diagram and select Visible
Items»Polymorphic VI Selector from the shortcut menu to display the
selector. To change the polymorphic VI to accept all the handled data types
again, right-click the polymorphic VI and select Select Type»Automatic
from the shortcut menu or use the Operating tool to click the polymorphic
VI selector and select Automatic from the shortcut menu.

Build polymorphic VIs when you perform the same operation on different
data types.

@ Note You can build and edit polymorphic VIs only in the LabVIEW Professional
Development System.

Saving Vls

For example, if you want to perform the same mathematical operation on a
single-precision floating-point numeric, an array of numeric values, or a
waveform, you could create three separate VIs—Compute Number,
Compute Array, and Compute Waveform. When you need to perform the
operation, you place one of these VIs on the block diagram, depending on
the data type you use as an input.

Instead of manually placing a version of the VI on the block diagram, you
can create and use a single polymorphic VI.

Naming Vis

LabVIEW Fundamentals

Select File»Save to save a VI. When you save a VI, you should use a
descriptive name so you can easily identify the VI later. You also can save
VIs for a previous version of LabVIEW to make upgrading LabVIEW
convenient and to help you maintain the VIs in two versions of LabVIEW
when necessary.

When you save VIs, use descriptive names. Descriptive names, such as
Temperature Monitor.vi and Serial Write & Read.vi, make it
easy to identify a VI and know how you use it. If you use ambiguous names,
such as VI#1.vi, you might find it difficult to identify VIs, especially if
you have saved several VIs.

Consider whether your users will run the VIs on another platform. Avoid
using characters that some operating systems reserve for special purposes,
such as \: /?*<> and #.

7-6 ni.com

Chapter 7 Creating Vls and SubVls

@ Note If you have several VIs of the same name saved on your computer, carefully organize
the VlIs in different directories or LLBs to avoid LabVIEW referencing the wrong subVI
when running the top-level VI.

Saving for a Previous Version

You can save VIs for a previous version of LabVIEW to make upgrading
LabVIEW convenient and to help you maintain the VIs in two versions of
LabVIEW when necessary. Select File»Save For Previous Version to
save for the previous version of LabVIEW.

When you save a VI for the previous version, LabVIEW converts not just
that VI but all the VIs in its hierarchy, excluding files in the
labview\vi.1lib directory.

Often a VI uses functionality not available in the previous version of
LabVIEW. In such cases, LabVIEW saves as much of the VI as it can and
produces a report of what it cannot convert. The report appears immediately
in the Warnings dialog box. Click the OK button to acknowledge these
warnings and close the dialog box. Click the Save to File button to save the
warnings to a text file to review later.

Customizing Vls

You can configure VIs and subVIs to work according to your application
needs. For example, if you plan to use a VI as a subV[that requires user
input, configure the VI so that its front panel appears each time you call it.

Select File» VI Properties to configure the appearance and behavior of a
VI. Use the Category pull-down menu at the top of the VI Properties
dialog box to select from several different option categories.

The VI Properties dialog box includes the following option categories:

* General—Use this page to determine the current path where a VI is
saved, its revision number, revision history, and any changes made
since the VI was last saved. You also can use this page to edit the icon
for the VL.

* Documentation—Use this page to add a description of the VI and link
to a help file topic.

Refer to the Documenting Vs section of Chapter 12, Documenting and
Printing VlIs, for more information about the documentation options.

* Security—Use this page to lock or password-protect a VI.

© National Instruments Corporation 7-7 LabVIEW Fundamentals

Chapter 7 Creating Vis and SubVls

LabVIEW Fundamentals

Window Appearance—Use this page to customize the window
appearance of VIs, such as the window title and style.

Window Size—Use this page to set the size of the window.

Execution—Use this page to configure how a VI runs. For example,
you can configure a VI to run immediately when it opens or to pause
when called as a subVI.

Editor Options—Use this page to set the size of the alignment grid
for the current VI and to change the style of the control or indicator
LabVIEW creates when you right-click a terminal and select
Create»Control or Create»Indicator from the shortcut menu.

Refer to the Aligning and Distributing Objects section of Chapter 4,
Building the Front Panel, for more information about the alignment
grid.

7-8 ni.com

Loops and Structures

Structures are graphical representations of the loops and case statements of
text-based programming languages. Use structures on the block diagram to
repeat blocks of code and to execute code conditionally or in a specific
order.

Like other nodes, structures have terminals that connect them to other block
diagram nodes, execute automatically when input data are available, and
supply data to output wires when execution completes.

Each structure has a distinctive, resizable border to enclose the section of
the block diagram that executes according to the rules of the structure.
The section of the block diagram inside the structure border is called a
subdiagram. The terminals that feed data into and out of structures are
called tunnels. A tunnel is a connection point on a structure border.

Use the following structures located on the Structures palette to control
how a block diagram executes processes:

* For Loop—Executes a subdiagram a set number of times.
* While Loop—Executes a subdiagram until a condition occurs.

* Case structure—Contains multiple subdiagrams, only one of which
executes depending on the input value passed to the structure.

* Sequence structure—Contains one or more subdiagrams that execute
in sequential order.

* Event structure—Contains one or more subdiagrams that execute
depending on how the user interacts with the VI.

* Timed Structures—Execute one or more subdiagrams with time
bounds and delays.

Right-click the border of a structure to display its shortcut menu.

For Loop and While Loop Structures

Use the For Loop and the While Loop to control repetitive operations.

© National Instruments Corporation 8-1 LabVIEW Fundamentals

Chapter 8 Loops and Structures

For Loops

LabVIEW Fundamentals

A For Loop, shown as follows, executes a subdiagram a set number of
times.

N
1

The value in the count terminal (an input terminal), shown as follows,
indicates how many times to repeat the subdiagram.

N

Set the count explicitly by wiring a value from outside the loop to the left
or top side of the count terminal, or set the count implicitly with
auto-indexing.

[+

Refer to the Auto-Indexing to Set the For Loop Count section of this chapter
for more information about setting the count implicitly.

The iteration terminal (an output terminal), shown as follows, contains the
number of completed iterations.

[d

The iteration count always starts at zero. During the first iteration, the
iteration terminal returns 0.

Both the count and iteration terminals are 32-bit signed integers. If you wire
a floating-point number to the count terminal, LabVIEW rounds it and
coerces it to within range. If you wire 0 or a negative number to the count
terminal, the loop does not execute and the outputs contain the default data
for that data type.

Add shift registers to the For Loop to pass data from the current iteration to
the next iteration.

Refer to the Shift Registers section of this chapter for more information
about adding shift registers to a loop.

82 ni.com

While Loops

Chapter 8 Loops and Structures

Similar to a Do Loop or a Repeat-Until Loop in text-based programming
languages, a While Loop, shown as follows, executes a subdiagram until a
condition occurs.

The While Loop executes the subdiagram until the conditional terminal, an
input terminal, receives a specific Boolean value. The default behavior and
appearance of the conditional terminal is Stop if True, shown as follows.

When a conditional terminal is Stop if True, the While Loop executes its
subdiagram until the conditional terminal receives a TRUE value. You can
change the behavior and appearance of the conditional terminal by
right-clicking the terminal or the border of the While Loop and selecting
Continue if True, shown as follows, from the shortcut menu.

When a conditional terminal is Continue if True, the While Loop executes
its subdiagram until the conditional terminal receives a FALSE value. You
also can use the Operating tool to click the conditional terminal to change
the condition.

If you place the terminal of the Boolean control outside the While Loop,
as shown in the following figure, and the control is set to FALSE if the
conditional terminal is Stop if True when the loop starts, you cause an
infinite loop. You also cause an infinite loop if the control outside the loop
is set to TRUE and the conditional terminal is Continue if True.

© National Instruments Corporation 8-3 LabVIEW Fundamentals

Chapter 8 Loops and Structures

LabVIEW Fundamentals

Changing the value of the control does not stop the infinite loop because the
value is only read once, before the loop starts. To stop an infinite loop, you
must abort the VI by clicking the Abort Execution button on the toolbar.

You also can perform basic error handling using the conditional terminal of
a While Loop. When you wire an error cluster to the conditional terminal,
only the TRUE or FALSE value of the status parameter of the error cluster
passes to the terminal. Also, the Stop if True and Continue if True

shortcut menu items change to Stop if Error and Continue while Error.

Refer to the Handling Errors section of Chapter 6, Running and Debugging
Vs, for more information about error clusters and error handling.

The iteration terminal (an output terminal), shown as follows, contains the
number of completed iterations.

[

The iteration count always starts at zero. During the first iteration, the
iteration terminal returns 0.

Add shift registers to the While Loop to pass data from the current iteration
to the next iteration.

Refer to the Shift Registers section of this chapter for more information
about adding shift registers to a loop.

8-4 ni.com

Chapter 8 Loops and Structures

Controlling Timing

You might want to control the speed at which a process executes, such as
the speed at which data values are plotted to a chart. You can use a Wait

function in the loop to wait an amount of time in milliseconds before the

loop re-executes.

Auto-Indexing Loops

If you wire an array to a For Loop or While Loop input tunnel, you can read
and process every element in that array by enabling auto-indexing.

Refer to the Arrays section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about arrays.

When you wire an array to an input tunnel on the loop border and enable
auto-indexing on the input tunnel, elements of that array enter the loop one
at a time, starting with the first element. When auto-indexing is disabled,
the entire array is passed into the loop. When you auto-index an array
output tunnel, the output array receives a new element from every iteration
of the loop. Therefore, auto-indexed output arrays are always equal in size
to the number of iterations. For example, if the loop executes 10 times, the
output array has 10 elements. If you disable auto-indexing on an output
tunnel, only the element from the last iteration of the loop passes to the next
node on the block diagram.

Right-click the tunnel at the loop border and select Enable Indexing or
Disable Indexing from the shortcut menu to enable or disable
auto-indexing. Auto-indexing for While Loops is disabled by default.

A bracketed glyph appears on the loop border to indicate that auto-indexing
is enabled. The thickness of the wire between the output tunnel and the next
node also indicates the loop is using auto-indexing. The wire is thicker
when you use auto-indexing because the wire contains an array, instead of
a scalar.

The loop indexes scalar elements from 1D arrays, 1D arrays from

2D arrays, and so on. The opposite occurs at output tunnels. Scalar
elements accumulate sequentially into 1D arrays, 1D arrays accumulate
into 2D arrays, and so on.

© National Instruments Corporation 8-5 LabVIEW Fundamentals

Chapter 8 Loops and Structures

Auto-Indexing to Set the For Loop Count

If you enable auto-indexing on an array wired to a For Loop input terminal,
LabVIEW sets the count terminal to the array size so you do not need to
wire the count terminal. Because you can use For Loops to process arrays
an element at a time, LabVIEW enables auto-indexing by default for every
array you wire to a For Loop. Disable auto-indexing if you do not need to
process arrays one element at a time.

If you enable auto-indexing for more than one tunnel or if you wire the
count terminal, the count becomes the smaller of the choices. For example,
if two auto-indexed arrays enter the loop, with 10 and 20 elements
respectively, and you wire a value of 15 to the count terminal, the loop
executes 10 times, and the loop indexes only the first 10 elements of the
second array. As another example, if you plot data from two sources on one
graph and you want to plot the first 100 elements, wire 100 to the count
terminal. If one of the data sources includes only 50 elements, the loop
executes 50 times and indexes only the first 50 elements. Use the Array Size
function to determine the size of arrays.

Auto-Indexing with While Loops

If you enable auto-indexing for an array entering a While Loop, the While
Loop indexes the array the same way a For Loop does. However, the
number of iterations a While Loop executes is not limited by the size of the
array because the While Loop iterates until a specific condition occurs.
When a While Loop indexes past the end of the input array, the default
value for the array element type passes into the loop. You can prevent the
default value from passing into the While Loop by using the Array Size
function. The Array Size function indicates how many elements are in the
array. Set up the While Loop to stop executing when it has iterated the same
number of times as the array size.

A Caution Because you cannot determine the size of the output array in advance, enabling
auto-indexing for the output of a For Loop is more efficient than with a While Loop.
Iterating too many times can cause your system to run out of memory.

LabVIEW Fundamentals 8-6 ni.com

Chapter 8 Loops and Structures

Using Loops to Build Arrays

In addition to using loops to read and process elements in an array, you also
can use the For Loop and the While Loop to build arrays. Wire the output
of a VI or function in the loop to the loop border. If you use a While Loop,
right-click the resulting tunnel and select Enable Indexing from the
shortcut menu. On the For Loop, indexing is enabled by default. The output
of the tunnel is an array of every value the VI or function returns after each
loop iteration.

Refer to the Arrays section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about arrays.

Refer to the labview\examples\general\arrays.11b for examples
of building arrays.

Shift Registers and the Feedback Node in Loops

Use shift registers or the Feedback Node with For Loops or While Loops
to transfer values from one loop iteration to the next.

Shift Registers

Use shift registers when you want to pass values from previous iterations
through the loop to the next iteration. A shift register appears as a pair of
terminals, shown as follows, directly opposite each other on the vertical
sides of the loop border.

= [&]

The terminal on the right side of the loop contains an up arrow and stores
data on the completion of an iteration. LabVIEW transfers the data
connected to the right side of the register to the next iteration. After the loop
executes, the terminal on the right side of the loop returns the last value
stored in the shift register.

Create a shift register by right-clicking the left or right border of a loop and
selecting Add Shift Register from the shortcut menu.

A shift register transfers any data type and automatically changes to the
data type of the first object wired to the shift register. The data you wire to
the terminals of each shift register must be the same type.

You can add more than one shift register to a loop. If you have multiple
operations that use previous iteration values within your loop, use multiple

© National Instruments Corporation 8-7 LabVIEW Fundamentals

Chapter 8 Loops and Structures

LabVIEW Fundamentals

shift registers to store the data values from those different processes in the
structure, as shown in the following figure.

Initializing Shift Registers

Initializing a shift register resets the value the shift register passes to the
first iteration of the loop when the VI runs. Initialize a shift register by
wiring a control or constant to the shift register terminal on the left side of
the loop, as shown in the following figure.

Increment Murneric

In the previous figure, the For Loop executes five times, incrementing the
value the shift register carries by one each time. After five iterations of the
For Loop, the shift register passes the final value, 5, to the indicator and the
VI quits. Each time you run the VI, the shift register begins with a value
of 0.

If you do not initialize the shift register, the loop uses the value written to

the shift register when the loop last executed or the default value for the data
type if the loop has never executed.

8-8 ni.com

Chapter 8 Loops and Structures

Use an uninitialized shift register to preserve state information between
subsequent executions of a VI. The following figure shows an uninitialized
shift register.

Increrment Murneric

+i

[

In the previous figure, the For Loop executes five times, incrementing the
value the shift register carries by one each time. The first time you run the
VI, the shift register begins with a value of 0, which is the default value for
a 32-bit integer. After five iterations of the For Loop, the shift register
passes the final value, 5, to the indicator, and the VI quits. The next time
you run the VI, the shift register begins with a value of 5, which was the last
value from the previous execution. After five iterations of the For Loop, the
shift register passes the final value, 10, to the indicator. If you run the VI
again, the shift register begins with a value of 10, and so on. Uninitialized

shift registers retain the value of the previous iteration until you close
the VL.

Stacked Shift Registers

Stacked shift registers let you access data from previous loop iterations.
Stacked shift registers remember values from multiple previous iterations
and carry those values to the next iterations. To create a stacked shift
register, right-click the left terminal and select Add Element from the
shortcut menu.

Stacked shift registers can occur only on the left side of the loop because
the right terminal transfers the data generated only from the current
iteration to the next iteration, as shown in the following figure.

© National Instruments Corporation 8-9 LabVIEW Fundamentals

Chapter 8 Loops and Structures

LabVIEW Fundamentals

Mlurneric

If you add another element to the left terminal in the previous figure, values
from the last two iterations carry over to the next iteration, with the most
recent iteration value stored in the top shift register. The bottom terminal
stores the data passed to it from the previous iteration.

Feedback Node

The Feedback Node, shown as follows, appears automatically in a For
Loop or While Loop when you wire the output of a node or group of nodes
to the input of that node or group of nodes.

You also can select the Feedback Node on the Functions palette and place
it inside a For Loop or While Loop. Use the Feedback Node to avoid long
wires across loops.

Right-click the Feedback Node and select Initializer Terminal from the
shortcut menu to add the initializer terminal to the loop border to initialize
the loop. When you select the Feedback Node on the Functions palette or
if you convert an initialized shift register to a Feedback Node, the loop
appears with an initializer terminal. Initializing a Feedback Node resets the
initial value the Feedback Node passes to the first iteration of the loop when
the VI runs. If you do not initialize the Feedback Node, the Feedback Node
passes the last value written to the node or the default value for the data type
if the loop has never executed. If you do not wire the input of the initializer
terminal, each time the VI runs, the initial input of the Feedback Node is
the last value from the previous execution.

8-10 ni.com

Chapter 8 Loops and Structures

Replace a shift register with a Feedback Node by right-clicking the shift
register and selecting Replace with Feedback Node from the shortcut
menu. Replace a Feedback Node with shift registers by right-clicking the
Feedback Node and selecting Replace with Shift Register from the
shortcut menu.

Default Data in Loops

While Loops produce default data when the shift register is not initialized.

For Loops produce default data if you wire 0 to the count terminal of the
For Loop or if you wire an empty array to the For Loop as an input with
auto-indexing enabled. The loop does not execute, and any output tunnel
with auto-indexing disabled contains the default value for the tunnel data
type. Use shift registers to transfer values through a loop regardless of
whether the loop executes.

Refer to the LabVIEW Quick Reference Card for more information about
default values for data types.

Case, Sequence, and Event Structures

Case, Stacked Sequence, Flat Sequence, and Event structures contain
multiple subdiagrams. A Case structure executes one subdiagram
depending on the input value passed to the structure. A Stacked Sequence
structure and a Flat Sequence structure execute all their subdiagrams in
sequential order. An Event structure executes its subdiagrams depending
on how the user interacts with the VI.

Case Structures

A Case structure, shown as follows, has two or more subdiagrams, or cases.

4| True v
.

Only one subdiagram is visible at a time, and the structure executes only
one case at a time. An input value determines which subdiagram executes.
The Case structure is similar to switch statements or if...then...else
statements in text-based programming languages.

© National Instruments Corporation 8-11 LabVIEW Fundamentals

Chapter 8 Loops and Structures

LabVIEW Fundamentals

The case selector label at the top of the Case structure, shown as follows,
contains the name of the selector value that corresponds to the case in the
center and decrement and increment arrows on each side.

4| True ~]

Click the decrement and increment arrows to scroll through the available
cases. You also can click the down arrow next to the case name and select
a case from the pull-down menu.

Wire an input value, or selector, to the selector terminal, shown as follows,
to determine which case executes.

A

You must wire an integer, Boolean value, string, or enumerated type value
to the selector terminal. You can position the selector terminal anywhere on
the left border of the Case structure. If the data type of the selector terminal
is Boolean, the structure has a TRUE case and a FALSE case. If the selector
terminal is an integer, string, or enumerated type value, the structure can
have any number of cases.

Specify a default case for the Case structure to handle out-of-range values.
Otherwise, you must explicitly list every possible input value. For example,
if the selector is an integer and you specify cases for 1, 2, and 3, you must
specify a default case to execute if the input value is 4 or any other
unspecified integer value.

Case Selector Values and Data Types

You can enter a single value or lists and ranges of values in the case selector
label. For lists, use commas to separate values. For numeric ranges, specify
arange as 10. .20, meaning all numbers from 10 to 20 inclusively. You
also can use open-ended ranges. For example, . .100 represents all
numbers less than or equal to 100, and 100. . represents all numbers
greater than or equal to 100. You also can combine lists and ranges, for
example . .5, 6, 7..10, 12, 13, 14. When you enter values that
contain overlapping ranges in the same case selector label, the Case
structure redisplays the label in a more compact form. The previous
example redisplays as . .10, 12..14. For string ranges, arange ofa. .c
includes all of a and b, but not c. A range of a. . c, c includes the ending
value of c.

8-12 ni.com

Chapter 8 Loops and Structures

If you enter a selector value that is not the same type as the object wired to
the selector terminal, the value appears red to indicate that you must delete
or edit the value before the structure can execute, and the VI will not run.
Also, because of the possible round-off error inherent in floating-point
arithmetic, you cannot use floating-point numbers as case selector values.
If you wire a floating-point value to the case, LabVIEW rounds the value
to the nearest even integer. If you type a floating-point value in the case
selector label, the value appears red to indicate that you must delete or edit
the value before the structure can execute.

Input and Output Tunnels

You can create multiple input and output tunnels for a Case structure.
Inputs are available to all cases, but cases do not have to use each input.
However, you must define each output tunnel for each case. When you
create an output tunnel in one case, tunnels appear at the same position on
the border in all the other cases. If even one output tunnel is not wired, all
output tunnels on the structure appear as white squares. You can define a
different data source for the same output tunnel in each case, but the data
types must be compatible for each case. You also can right-click the output
tunnel and select Use Default If Unwired from the shortcut menu to use
the default value for the tunnel data type for all unwired tunnels.

Using Case Structures for Error Handling

When you wire an error cluster to the selector terminal of a Case structure,
the case selector label displays two cases—Error and No Error—and the
border of the Case structure changes color—red for Error and green for
No Error. If an error occurs, the Case structure executes the Error
subdiagram.

Refer to the Handling Errors section of Chapter 6, Running and Debugging
Vls, for more information about handling errors.

Sequence Structures

A sequence structure contains one or more subdiagrams, or frames, that

execute in sequential order. Within each frame of a sequence structure, as
in the rest of the block diagram, data dependency determines the execution
order of nodes. Sequence structures are not used commonly in LabVIEW.

There are two types of sequence structures—the Flat Sequence structure
and the Stacked Sequence structure.

© National Instruments Corporation 8-13 LabVIEW Fundamentals

Chapter 8 Loops and Structures

LabVIEW Fundamentals

The Flat Sequence structure, shown as follows, displays all the frames at
once and executes the frames from left to right and when all data values
wired to a frame are available, until the last frame executes. The data values
leave each frame as the frame finishes executing.

10000000

oooooooQC

The Stacked Sequence structure, shown as follows, stacks each frame so
you see only one frame at a time and executes frame 0, then frame 1, and
so on until the last frame executes.

0.2 -

10000000

To take advantage of the inherent parallelism in LabVIEW, avoid overusing
sequence structures. Sequence structures guarantee the order of execution
and prohibit parallel operations. For example, asynchronous tasks that use
I/0O devices, such as PXI, GPIB, serial ports, and DAQ devices, can run
concurrently with other operations if sequence structures do not prevent
them from doing so.

When you need to control the execution order, consider establishing data
dependency between the nodes. For example, you can use flow-through
parameters such as error /O to control the execution order.

Refer to the Handling Errors section of Chapter 6, Running and Debugging
Vis, for more information about error I/0. Refer to the Flow-Through
Parameters section of Chapter 5, Building the Block Diagram, for more
information about flow-through parameters.

8-14 ni.com

Chapter 8 Loops and Structures

Event Structures

An Event structure, shown as follows, has one or more subdiagrams, or
event cases, exactly one of which executes when the structure executes.

[ZHa| [0 application Exit? «k]

Type |

Tirne

3 B

The Event structure waits until an event happens, and then executes the
appropriate case to handle that event. Events can originate from the user
interface, external I/O, or other parts of the application. User interface
events include mouse clicks, key presses, and so on. External I/O events
include hardware timers or triggers that signal when data acquisition
completes or when an error condition occurs. You can generate other types
of events programmatically and use them to communicate with different
parts of the application. LabVIEW supports user interface and
programmatically generated events but does not support external I/O
events.

@ Note The Event structure is available only in the LabVIEW Full and Professional

Development Systems. You can run a VI built with event-driven programming features in
the LabVIEW Base Package, but you cannot reconfigure the event-handling components.

© National Instruments Corporation 8-15 LabVIEW Fundamentals

Grouping Data Using Strings,
Arrays, and Clusters

Use strings, arrays, and clusters to group data. Strings group sequences of
ASCII characters. Arrays group data elements of the same type. Clusters
group data elements of mixed types.

Grouping Data with Strings

A string is a sequence of displayable or non-displayable ASCII characters.
Strings provide a platform-independent format for information and data.
Some of the more common applications of strings include the following:

* Creating simple text messages.

* Passing numeric data as character strings to instruments and then
converting the strings to numeric values.

* Storing numeric data to disk. To store numeric data in an ASCII file,
you must first convert numeric data to strings before writing the data
to a disk file.

* Instructing or prompting the user with dialog boxes.

On the front panel, strings appear as tables, text entry boxes, and labels.
LabVIEW includes built-in VIs and functions you can use to manipulate
strings, including formatting strings, parsing strings, and other editing.

Strings on the Front Panel

Use the string controls and indicators to simulate text entry boxes and
labels.

Refer to the String Controls and Indicators section of Chapter 4, Building
the Front Panel, for more information about string controls and indicators.

© National Instruments Corporation 9-1 LabVIEW Fundamentals

Chapter 9

Grouping Data Using Strings, Arrays, and Clusters

String Display Types

Right-click a string control or indicator on the front panel to select from the
display types shown in the following table. The table also shows an
example message in each display type.

Display
Type Description Message
Normal Displays printable There are four display types.
Display characters using the \ is a backslash.
font of the control.
Non-displayable
characters generally
appear as boxes.
‘\’ Codes Displays backslash There\sare\sfour\sdisplay\stypes.\n\\\sis\sa\sbackslash.
Display codes for all
non-displayable
characters.
PaSSWOI'd Displays anasterisk LA R RS SR EREEEEEEEEEEEEEEESEEE]
Display (*) for each character HHERAFK A KA KT KA KT KA KA
including spaces.
Hex Displays the ASCII 5468 6572 6520 6172 6520 666F 7572 2064 6973 706C 6179 2074
Display value of each character 7970 6573 2E0A 5C20 6973 2061 2062 6163 6B73 6C61 7368 2E

in hex instead of the
character itself.

Tables

Use the table control to create a table on the front panel. Each cell in a table
is a string, and each cell resides in a column and a row. Therefore, a table
is a display for a 2D array of strings.

Refer to the Arrays section of this chapter for more information about
arrays.

LabVIEW Fundamentals

9-2 ni.com

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

Editing, Formatting, and Parsing Strings

Use the String functions to edit strings in ways similar to the following:

* Search for, retrieve, and replace characters or substrings within a
string.

* Change all text in a string to upper case or lower case.
* Find and retrieve matching patterns within a string.

e Retrieve a line from a string.

* Rotate and reverse text within a string.

* Concatenate two or more strings.

* Delete characters from a string.

Refer to the LabVIEW Style Checklist in the LabVIEW Help for more
information about minimizing memory usage when editing strings
programmatically. Refer to the 1abview\examples\general\
strings.11b for examples of using the String functions to edit strings.

Formatting and Parsing Strings

To use data in another VI, function, or application, you often must convert
the data to a string and then format the string in a way that the VI, function,
or application can read. For example, Microsoft Excel expects strings that
include delimiters, such as tabs, commas, or blank spaces. Excel uses the
delimiter to segregate numbers or words into cells.

For example, to write a 1D array of numeric values to a spreadsheet using
the Write to Binary File function, you must format the array into a string
and separate each numeric with a delimiter, such as a tab. To write an array
of numeric values to a spreadsheet using the Write To Spreadsheet File VI,
you must format the array with the Array To Spreadsheet String function
and specify a format and a delimiter.

Use the String functions to perform tasks similar to the following:

» Extract a subset of strings from a string.

e Convert data into strings.

* Format a string for use in a word processing or spreadsheet application.

Use the File I/O VIs and functions to save strings to text and spreadsheet
files.

© National Instruments Corporation 9-3 LabVIEW Fundamentals

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

Format Specifiers

In many cases, you must enter one or more format specifiers in the format
string parameter of a String function to format a string. A format specifier
is a code that indicates how to convert numeric data to or from a string.
LabVIEW uses conversion codes to determine the textual format of the
parameter. For example, a format specifier of $x converts a hex integer to
or from a string.

Grouping Data with Arrays and Clusters

Arrays

LabVIEW Fundamentals

Use the array and cluster controls and functions to group data. Arrays group
data elements of the same type. Clusters group data elements of mixed

types.

An array consists of elements and dimensions. Elements are the data
that make up the array. A dimension is the length, height, or depth of
an array. An array can have one or more dimensions and as many as

(231) — 1 elements per dimension, memory permitting.

You can build arrays of numeric, Boolean, path, string, waveform, and
cluster data types. Consider using arrays when you work with a collection
of similar data and when you perform repetitive computations. Arrays are
ideal for storing data you collect from waveforms or data generated in
loops, where each iteration of a loop produces one element of the array.

Restrictions

You cannot create arrays of arrays. However, you can use a
multidimensional array or create an array of clusters where each cluster
contains one or more arrays. Also, you cannot create an array of subpanel
controls, tab controls, .NET controls, ActiveX controls, charts, or multiplot
XY graphs.

Refer to the Clusters section of this chapter for more information about
clusters.

Indexes

To locate a particular element in an array requires one index per dimension.
In LabVIEW, indexes let you navigate through an array and retrieve
elements, rows, columns, and pages from an array on the block diagram.

9-4 ni.com

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

Examples of Arrays

An example of a simple array is a text array that lists the nine planets of our
solar system. LabVIEW represents this as a 1D array of strings with nine
elements.

Array elements are ordered. An array uses an index so you can readily
access any particular element. The index is zero-based, which means it is
in the range 0 to n — 1, where n is the number of elements in the array. For
example, n = 9 for the nine planets, so the index ranges from 0 to 8. Earth
is the third planet, so it has an index of 2.

Another example of an array is a waveform represented as a numeric array
in which each successive element is the voltage value at successive time
intervals, as shown in the following figure.

Index O 1 2 3 4 5 6 7 8
Volts [04 [09 [14] 08 [-0.1]-0.7[-0.3] 0.3] 0.2]

A more complex example of an array is a graph represented as an array of
points where each point is a cluster containing a pair of numeric values that
represent the X and Y coordinates, as shown in the following figure.

Index 0 1 2 3 4 5 6
XCoord [04 [22 [33 [32[24[18 [1.9]

Index 0 1 2 3 4 5 6
YCoord [02 05 [13 [23] 26 [19 12]

© National Instruments Corporation 9-5 LabVIEW Fundamentals

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW Fundamentals

The previous examples use 1D arrays. A 2D array stores elements in a grid.
It requires a column index and a row index to locate an element, both of
which are zero-based. The following figure shows an 8 column by 8 row
2D array, which contains 8 x 8 = 64 elements.

Column Index
0 1 2 3 4 5 6 7

Row Index

N o o WD = O

For example, a chessboard has eight columns and eight rows for a total of
64 positions. Each position can be empty or have one chess piece. You can
represent a chessboard as a 2D array of strings. Each string is the name of
the piece that occupies the corresponding location on the board or an empty
string if the location is empty.

You can generalize the previous 1D array examples to two dimensions by
adding a row to the array. The following figure shows a collection of
waveforms represented as a 2D array of numeric values. The row index
selects the waveform, and the column index selects the point on the
waveform.

0[04 09| 14|08 [-01 |-07 [-0.3 | 0.3 | 0.2
1/-01 106 | 04 [02 | 08] 16 | 14 | 09 | 11
216 [14 | 0.7 | 0.5 [-0.5 [-0.6 [-0.2 | 0.3 | 0.5

Refer to the labview\examples\general\arrays.11b for examples
of using arrays.

9-6 ni.com

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

Creating Array Controls, Indicators, and Constants

Create an array control or indicator on the front panel by placing an array
shell on the front panel, as shown in the following figure, and dragging a
data object or element, which can be a numeric, Boolean, string, path,
refnum, or cluster control or indicator, into the array shell.

The array shell automatically resizes to accommodate the new object.

To create an array constant on the block diagram, select an array constant
on the Functions palette, place the array shell on the block diagram, and
place a string constant, numeric constant, or cluster constant in the array
shell. You can use an array constant to store constant data or as a basis for
comparison with another array.

Creating Multidimensional Arrays

To create a multidimensional array on the front panel, right-click the index
display and select Add Dimension from the shortcut menu. You also can
resize the index display until you have as many dimensions as you want. To
delete dimensions one at a time, right-click the index display and select
Remove Dimension from the shortcut menu. You also can resize the index
display to delete dimensions.

To display a particular element on the front panel, either type the index
number in the index display or use the arrows on the index display to
navigate to that number.

For example, a 2D array contains rows and columns. As shown in the
following figure, the upper display of the two boxes on the left is the row
index and the lower display is the column index. The combined display to
the right of the row and column displays shows the value at the specified
position. The following figure shows that the value at row 6, column 13,
1S 66.

© National Instruments Corporation 9-7 LabVIEW Fundamentals

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW Fundamentals

Array

— g

1 Row index 3 Value at row, column

2 Column index

Rows and columns are zero-based, meaning the first column is column 0,
the second column is column 1, and so on. Changing the index display for
the following array to row 1, column 2 displays a value of 6.

0 1 2 3
4 5 6 7
8 9 10 11

If you try to display a column or row that is out of the range of the array
dimensions, the array control appears dimmed to indicate that there is no
value defined, and LabVIEW displays the default value of the data type.
The default value of the data type depends on the data type of the array.

Use the Positioning tool to resize the array to show more than one row or
column at a time.

Array Functions

Use the Array functions to create and manipulate arrays. For example, you
can perform tasks similar to the following:

e Extract individual data elements from an array.
* Insert, delete, or replace data elements in an array.
e Split arrays.

Use the Build Array function to build an array programmatically. You also
can use a loop to build an array.

Refer to the Using Loops to Build Arrays section of Chapter 8, Loops and
Structures, for information about using loops to build arrays.

Refer to the LabVIEW Style Checklist in the LabVIEW Help for more
information about minimizing memory usage when using Array functions
in a loop.

9-8 ni.com

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

Automatically Resizing Array Functions

The Index Array, Replace Array Subset, Insert Into Array, Delete From
Array, and Array Subset functions automatically resize to match the
dimensions of the input array you wire. For example, if you wire a 1D array
to one of these functions, the function shows a single index input. If you
wire a 2D array to the same function, it shows two index inputs—one for
the row and one for the column.

You can access more than one element, or subarray (row, column, or page),
with these functions by using the Positioning tool to manually resize the
function. When you expand one of these functions, the functions expand in
increments determined by the dimensions of the array wired to the function.
If you wire a 1D array to one of these functions, the function expands by a
single index input. If you wire a 2D array to the same function, the function
expands by two index inputs—one for the row and one for the column.

The index inputs you wire determine the shape of the subarray you want to
access or modify. For example, if the input to an Index Array function is a
2D array and you wire only the row input, you extract a complete 1D row
of the array. If you wire only the column input, you extract a complete
1D column of the array. If you wire the row input and the column input, you
extract a single element of the array. Each input group is independent and
can access any portion of any dimension of the array.

The block diagram shown in the following figure uses the Index Array
function to retrieve a row and an element from a 2D array.

N Index Array
Dutput Array
Index [row] éﬂf m r
Indes [row) E—f o Output
Indes [cal] i o :

To access multiple consecutive values in an array, expand the Index Array
function, but do not wire values to the index inputs in each increment. For
example, to retrieve the first, second, and third rows from a 2D array,
expand the Index Array function by three increments and wire 1D array
indicators to each sub-array output.

© National Instruments Corporation 9-9 LabVIEW Fundamentals

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

Clusters

LabVIEW Fundamentals

Default Data in Arrays

Indexing beyond the bounds of an array produces the default value for the
array element parameter. You can use the Array Size function to determine
the size of the array.

You can index beyond the bounds of an array inadvertently by indexing an
array past the last element using a While Loop, by supplying too large a
value to the index input of an Index Array function, or by supplying an
empty array to an Index Array function.

Refer to the Auto-Indexing Loops section of Chapter 8, Loops and
Structures, for more information about indexing. Refer to the LabVIEW
Quick Reference Card for more information about default values for data

types.

Clusters group data elements of mixed types. An example of a cluster is the
LabVIEW error cluster, which combines a Boolean value, a numeric value,
and a string. A cluster is similar to a record or a struct in text-based
programming languages.

Refer to the Error Clusters section of Chapter 6, Running and Debugging
Vls, for more information about using error clusters.

Bundling several data elements into clusters eliminates wire clutter on the
block diagram and reduces the number of connector pane terminals that
subVIs need. The connector pane has, at most, 28 terminals. If your front
panel contains more than 28 controls and indicators that you want to pass
to another VI, group some of them into a cluster and assign the cluster to a
terminal on the connector pane.

Most clusters on the block diagram have a pink wire pattern and data type
terminal. Clusters of numeric values, sometimes referred to as points, have
a brown wire pattern and data type terminal. You can wire brown numeric
clusters to Numeric functions, such as Add or Square Root, to perform the
same operation simultaneously on all elements of the cluster.

Order of Cluster Elements

Although cluster and array elements are both ordered, you must unbundle
all cluster elements at once or use the Unbundle By Name function to
access specific cluster elements. Clusters also differ from arrays in that they
are a fixed size. Like an array, a cluster is either a control or an indicator.
A cluster cannot contain a mixture of controls and indicators.

9-10 ni.com

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

Cluster elements have a logical order unrelated to their position in the shell.
The first object you place in the cluster is element 0, the second is element
1, and so on. If you delete an element, the order adjusts automatically. The
cluster order determines the order in which the elements appear as
terminals on the Bundle and Unbundle functions on the block diagram. You
can view and modify the cluster order by right-clicking the cluster border
and selecting Reorder Controls In Cluster from the shortcut menu.

To wire clusters to each other, both clusters must have the same number of
elements. Corresponding elements, determined by the cluster order, must
have compatible data types. For example, if a double-precision
floating-point numeric value in one cluster corresponds in cluster order to
a string in the another cluster, the wire on the block diagram appears broken
and the VI does not run. If the numeric values are different representations,
LabVIEW coerces them to the same representation.

Cluster Functions

Use the Cluster functions to create and manipulate clusters. For example,
you can perform tasks similar to the following:

e Extract individual data elements from a cluster.
¢ Add individual data elements to a cluster.

e Break a cluster out into its individual data elements.

Creating Cluster Controls, Indicators, and Constants

Create a cluster control or indicator on the front panel by placing a cluster
shell on the front panel, as shown in the following figure, and dragging a
data object or element, which can be a numeric, Boolean, string, path,
refnum, array, or cluster control or indicator, into the cluster shell.

© National Instruments Corporation 9-11 LabVIEW Fundamentals

Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

To create a cluster constant on the block diagram, select a cluster constant
on the Functions palette, place the cluster shell on the block diagram, and
place a string constant, numeric constant, or cluster constant in the cluster
shell. You can use a cluster constant to store constant data or as a basis for
comparison with another cluster.

LabVIEW Fundamentals 9-12 ni.com

Graphs and Charts

After you acquire or generate data, use a graph or chart to display data in a
graphical form.

Graphs and charts differ in the way they display and update data. VIs with
a graph usually collect the data in an array and then plot the data to the
graph. This process is similar to a spreadsheet that first stores the data then
generates a plot of it. When the data is plotted, the graph discards the
previous data and displays only the new data. You typically use a graph
with fast processes that acquire data continuously.

In contrast, a chart appends new data points to those points already in the
display to create a history. On a chart, you can see the current reading or
measurement in context with data previously acquired. When more data
points are added than can be displayed on the chart, the chart scrolls so that
new points are added to the right side of the chart while old points disappear
to the left. You typically use a chart with slow processes in which only a
few data points per second are added to the plot.

Types of Graphs and Charts

LabVIEW includes the following types of graphs and charts:

* Waveform Graphs and Charts—Display data typically acquired at a
constant rate.

* XY Graphs—Display data acquired at a non-constant rate and data for
multivalued functions.

* Intensity Graphs and Charts—Display 3D data on a 2D plot by
using color to display the values of the third dimension.

* Digital Waveform Graphs—Display data as pulses or groups of
digital lines.

* (Windows) 3D Graphs—Display 3D data on a 3D plot in an ActiveX
object on the front panel.

Refer to labview\examples\general\graphs for examples of graphs
and charts.

© National Instruments Corporation 10-1 LabVIEW Fundamentals

Chapter 10 Graphs and Charts

Waveform Graphs and Charts

LabVIEW includes the waveform graph and chart to display data typically
acquired at a constant rate.

Waveform Graphs

The waveform graph displays one or more plots of evenly sampled
measurements. The waveform graph plots only single-valued functions, as
in y = f(x), with points evenly distributed along the x-axis, such as acquired
time-varying waveforms. The following figure shows an example of a
waveform graph.

1 | 1 1 | 1 | 1 |
10 15 20 25 30 35 40 45 50

The waveform graph can display plots containing any number of points.
The graph also accepts several data types, which minimizes the extent to
which you must manipulate data before you display it.

@ Note Use the digital waveform graph to display digital data. Refer to the Digital
Waveform Graphs section of this chapter for more information about the digital waveform
graph and the data types it accepts.

Refer to the Waveform Graph VI in the labview\examples\general\
graphs\gengraph. 11b for examples of the data types that a waveform
graph accepts.

LabVIEW Fundamentals 10-2 ni.com

XY Graphs

Chapter 10 Graphs and Charts

Waveform Charts

The waveform chart is a special type of numeric indicator that displays one
or more plots of data typically acquired at a constant rate. The following
figure shows an example of a waveform chart.

The waveform chart maintains a history of data, or buffer, from previous
updates. Right-click the chart and select Chart History Length from the
shortcut menu to configure the buffer. The default chart history length for a
waveform chart is 1,024 data points. The frequency at which you send data
to the chart determines how often the chart redraws.

Refer to the 1abview\examples\general\graphs\charts.11b for
examples of the waveform chart.

Waveform Data Type

The waveform data type carries the data, start time, and delta ¢ of a
waveform. You can create a waveform using the Build Waveform function.
Many of the VIs and functions you use to acquire or analyze waveforms
accept and return waveform data by default. When you wire waveform data
to a waveform graph or chart, the graph or chart automatically plots a
waveform based on the data, start time, and delta x of the waveform. When
you wire an array of waveform data to a waveform graph or chart, the graph
or chart automatically plots all waveforms.

Refer to the Digital Waveform Data Type section of this chapter for more
information about the digital waveform data type.

The XY graph is a general-purpose, Cartesian graphing object that plots
multivalued functions, such as circular shapes or waveforms with a varying
time base. The XY graph displays any set of points, evenly sampled or not.

© National Instruments Corporation 10-3 LabVIEW Fundamentals

Chapter 10 Graphs and Charts

You also can display Nyquist planes, Nichols planes, S planes, and Z planes
on the XY graph. Lines and labels on these planes are the same color as the
Cartesian lines, and you cannot modify the plane label font.

The following figure shows an example of an XY graph.

1.0+

-1.0-1
-1.0 0.5 0.0 0.5 1.0

The XY graph can display plots containing any number of points. The XY
graph also accepts several data types, which minimizes the extent to which
you must manipulate data before you display it.

Refer to the XY Graph VI in the labview\examples\general\
graphs\gengraph.11b for an example of an XY graph.

Intensity Graphs and Charts

Use the intensity graph and chart to display 3D data on a 2D plot by placing
blocks of color on a Cartesian plane. For example, you can use an intensity
graph or chart to display patterned data, such as temperature patterns and
terrain, where the magnitude represents altitude. The intensity graph and
chart accept a 3D array of numbers. Each number in the array represents a
specific color. The indexes of the elements in the 2D array set the plot
locations for the colors. The following figure shows the concept of the
intensity chart operation.

LabVIEW Fundamentals 10-4 ni.com

Chapter 10 Graphs and Charts

Input Array Color Map Definition
Column =y Array
o 1 2 Element| Color
0| 50 | 50 | 13 =2
5 blue
Row=x 1| 45 | 61 | 10 6 purple
2| 6 | 13| 5 10 It red
13 dk red
Resulting Plot 45 orange
3 50 yellow
dk red It red blue 61 green
2
yellow | green | dkred
1
yellow | orange | purple
0 1 2 3

The rows of the data pass into the display as new columns on the graph or
chart. If you want rows to appear as rows on the display, wire a 2D array
data type to the graph or chart, right-click the graph or chart, and select
Transpose Array from the shortcut menu.

The array indexes correspond to the lower left vertex of the block of color.
The block of color has a unit area, which is the area between the two points,
as defined by the array indexes. The intensity graph or chart can display up
to 256 discrete colors.

Refer to the 1abview\examples\general\graphs\intgraph.1llb
for examples of intensity graphs and charts.

Intensity Charts

After you plot a block of data on an intensity chart, the origin of the
Cartesian plane shifts to the right of the last data block. When the chart
processes new data, the new data values appear to the right of the old data
values. When a chart display is full, the oldest data values scroll off the left
side of the chart. This behavior is similar to the behavior of a strip chart.

© National Instruments Corporation 10-5 LabVIEW Fundamentals

Chapter 10 Graphs and Charts

LabVIEW Fundamentals

Refer to the Configuring Chart Update Modes section of this chapter for
more information about the strip chart.

The following figure shows an example of an intensity chart.

Frequency

Tirne

The intensity chart shares many of the optional parts of the waveform chart,
including the scale legend and graph palette, which you can show or hide
by right-clicking the chart and selecting Visible Items from the shortcut
menu. In addition, because the intensity chart includes color as a third
dimension, a scale similar to a color ramp control defines the range and
mappings of values to colors.

Refer to the Using Color Mapping with Intensity Graphs and Charts
section of this chapter for information about color mapping.

Like the waveform chart, the intensity chart maintains a history of data,
or buffer, from previous updates. Right-click the chart and select Chart
History Length from the shortcut menu to configure the buffer. The default
size for an intensity chart is 128 data points. The intensity chart display can
be memory intensive.

Intensity Graphs

The intensity graph works the same as the intensity chart, except it does not
retain previous data values and does not include update modes. Each time
new data values pass to an intensity graph, the new data values replace old
data values. Like other graphs, the intensity graph can have cursors. Each
cursor displays the x, y, and z values for a specified point on the graph.

Refer to the Using Graph Cursors section of this chapter for information
about cursors.

10-6 ni.com

Chapter 10 Graphs and Charts

Using Color Mapping with Intensity Graphs and Charts

An intensity graph or chart uses color to display 3D data on a 2D plot.
When you set the color mapping for an intensity graph or chart, you
configure the color scale of the graph or chart. The color scale consists of
at least two arbitrary markers, each with a numeric value and a
corresponding display color. The colors displayed on an intensity graph or
chart correspond to the numeric values associated with the specified colors.
Color mapping is useful for visually indicating data ranges, such as when
plot data exceeds a threshold value.

You can set the color mapping interactively for the intensity graph and chart
the same way you define the colors for a color ramp numeric control.

E Note The colors you want the intensity graph or chart to display are limited to the exact
colors and number of colors your video card can display. You also are limited by the
number of colors allocated for your display.

Refer to the Create IntGraph Color Table VI in the 1abview\examples\
general\graphs\intgraph.11b for an example of color mapping.

Digital Waveform Graphs

Use the digital waveform graph to display digital data, especially when you
work with timing diagrams or logic analyzers.

The digital waveform graph accepts the digital waveform data type, the
digital data type, and an array of those data types as an input. By default,
the digital waveform graph collapses digital buses, so the graph plots digital
data on a single plot. If you wire an array of digital data, the digital
waveform graph plots each element of the array as a different plot in the
order of the array.

© National Instruments Corporation 10-7 LabVIEW Fundamentals

Chapter 10 Graphs and Charts

The digital waveform graph in the following front panel plots digital data
on a single plot. The VI converts the numbers in the Numbers array to
digital data and displays the binary representations of the numbers in the
Binary Representations digital data indicator. In the digital graph, the
number 0 appears without a top line to symbolize that all the bit values are
zero. The number 255 appears without a bottom line to symbolize that all
the bit values are 1.

Mumbers

e [e
)3 v, v A A .

Binary Representations Digital Wavefarm Graph

gfgooo oooo
10000 o001
Zfo11 0111
3@101 1001
@111 1111
51111 1111

Mumnbers

Right-click the y-scale and select Expand Digital Buses from the shortcut
menu to plot each sample of digital data. Each plot represents a different bit
in the digital pattern.

LabVIEW Fundamentals 10-8 ni.com

Chapter 10 Graphs and Charts

The digital waveform graph in the following front panel displays the
six numbers in the Numbers array.

MNumbers
2] - - - - . -
T)ID I’_:]u 5 [5 BB Jes)27 ojl2s5
Binary Representations Digital Wyaveform Graph ‘\ 89
4 i -
ojoooo oooo Flot-| 0 1y
lloooo ooot i o 1 0 1
zloo11 o111 AL | l |
3lo1o1 1001 Plot 2 - 1] [1] o] 1
40111 1111
Sl1111 1111 Pota-____ o [1
Flat 4 -] 1
Plat 5 - o[v Lo | 1
Pote-__ o [1
Plat 7 - 0 1
T 1 1 1 1 1
0 1 2 3 4 5
Murbers

The Binary Representations digital indicator displays the binary
representations of the numbers. Each column in the table represents a bit.
For example, the number 89 requires 7 bits of memory (the 0 in column 7
indicates an unused bit). Point 3 on the digital waveform graph plots the
7 bits necessary to represent the number 89 and a value of 0 to represent the
unused eighth bit on plot 7.

The following VI converts an array of numbers to digital data and uses the
Build Waveform function to assemble the start time, delta ¢, and the
numbers entered in a digital data control and to display the digital data.

flurnbers Analog bo Digital WaveForm, vi| Einary Representations|
[us oy e A]|
o palll Build 'Waveform
255 f:f—m Digital Waveform Graphl
1 @

skart time ta
PP DD Y

© National Instruments Corporation 10-9 LabVIEW Fundamentals

Chapter 10 Graphs and Charts

3D Graphs

Refer to the Digital Data Control section of Chapter 4, Building the Front
Panel, for more information about the digital data control.

Refer to the 1labview\examples\general\graphs\DWDT
Graphs . 11b for examples of the digital waveform graph.

Digital Waveform Data Type

The digital waveform data type carries start time, delta x, the data, and the
attributes of a digital waveform. You can use the Build Waveform function
to create a digital waveform. When you wire digital waveform data to the
digital waveform graph, the graph automatically plots a waveform based on
the timing information and data of the digital waveform. Wire digital
waveform data to a digital data indicator to view the samples and signals of
a digital waveform.

Refer to the Waveform Data Type section of this chapter for more
information about the waveform data type.

For many real-world data sets, such as the temperature distribution on a
surface, joint time-frequency analysis, and the motion of an airplane, you
need to visualize data in three dimensions. With the 3D graphs, you can
visualize three-dimensional data and alter the way that data appears by
modifying the 3D graph properties.

@ Note The 3D graph controls are available only on Windows in the LabVIEW Full and
Professional Development Systems.

LabVIEW Fundamentals

LabVIEW includes the following types of 3D graphs:
e 3D Surface Graph—Draws a surface in 3D space.

* 3D Parametric Surface Graph—Draws a parametric surface in
3D space.

* 3D Curve Graph—Draws a line in 3D space.

Use the 3D graphs in conjunction with the 3D Graph VIs to plot curves and
surfaces. A curve contains individual points on the graph, each point having
an x, y, and z coordinate. The VI then connects these points with a line. A
curve is ideal for visualizing the path of a moving object, such as the flight
path of an airplane. The following figure shows an example of a 3D curve
graph.

10-10 ni.com

Chapter 10 Graphs and Charts

A surface plot uses x, y, and z data to plot points on the graph. The surface
plot then connects these points, forming a three-dimensional surface view
of the data. For example, you could use a surface plot for terrain mapping.
The following figure shows examples of a 3D surface graph and a

3D parametric surface graph.

© National Instruments Corporation 10-11 LabVIEW Fundamentals

Chapter 10 Graphs and Charts

LabVIEW Fundamentals

30 Surface

3D Parametric

The 3D graphs use ActiveX technology and VIs that handle

3D representation. When you select a 3D graph, LabVIEW places an
ActiveX container on the front panel that contains a 3D graph control.
LabVIEW also places a reference to the 3D graph control on the block
diagram. LabVIEW wires this reference to one of the three 3D Graph VIs.

10-12 ni.com

Chapter 10 Graphs and Charts

Customizing Graphs and Charts

Each graph and chart includes many options that you can use to customize
appearance, convey more information, or highlight data. Although graphs
and charts plot data differently, they have several common options that you
access from the shortcut menu. However, some options are available only
for a specific type of graph or chart.

Refer to the Customizing Graphs and Customizing Charts sections of this
chapter for more information about the options that are available only on
graphs or only on charts.

Using Multiple X- and Y-Scales

Autoscaling

All graphs support multiple x- and y-scales, and all charts support multiple
y-scales. Use multiple scales on a graph or chart to display multiple plots
that do not share a common x- or y-scale. Right-click the scale of the graph
or chart and select Duplicate Scale from the shortcut menu to add multiple
scales to the graph or chart.

All graphs and charts can automatically adjust their horizontal and vertical
scales to fit the data you wire to them. This behavior is called autoscaling.
Right-click the graph or chart and select X Scale»AutoScale X or

Y Scale»AutoScale Y from the shortcut menu to turn autoscaling on or
off. By default, autoscaling is enabled for the graph or chart. However,
autoscaling can slow performance.

Use the Operating tool or the Labeling tool to change the horizontal or
vertical scale directly.

Formatting X- and Y-Scales

Use the Format and Precision page of the Properties dialog box to
specify how the scales of the x-axis and y-axis appear on the graph or chart.

By default, the x-scale is configured to use floating-point notation and have
a label of Time, and the y-scale is configured to use automatic formatting
and have a label of Amp1itude. To configure the scales for the graph or
chart, right-click the graph or chart and select Properties from the shortcut
menu to display the Graph Properties dialog box or Chart Properties
dialog box.

© National Instruments Corporation 10-13 LabVIEW Fundamentals

Chapter 10 Graphs and Charts

Use the Format and Precision page of the Properties dialog box to
specify a numeric format for the scales of a graph or chart. Click the Scales
tab to rename the scale and to format the appearance of the axis scale. By
default, a graph or chart scale displays up to six digits before automatically
switching to exponential notation.

On the Format and Precision page, select Advanced editing mode to
display the text options that let you enter format strings directly. Enter
format strings to customize the appearance and numeric precision of the
scales.

Using the Graph Palette

LabVIEW Fundamentals

Use the graph palette, shown as follows, to interact with a graph or chart
while the VI is running.

ERR

With the graph palette, you can move cursors, zoom, and pan the display.
Right-click the graph or chart and select Visible Items»Graph Palette
from the shortcut menu to display the graph palette. The graph palette
appears with the following buttons, in order from left to right:

¢ Cursor Movement Tool (graph only)—Moves the cursor on the
display.

e Zoom—Zooms in and out of the display.
¢ Panning Tool—Picks up the plot and moves it around on the display.
Click a button in the graph palette to enable moving the cursor, zooming the

display, or panning the display. Each button displays a green LED when it
is enabled.

10-14 ni.com

Chapter 10 Graphs and Charts

Customizing Graph and Chart Appearance

Customize the appearance of a graph or chart by showing or hiding options.
Right-click the graph or chart and select Visible Items from the shortcut
menu to display or hide the following options:

Customizing Graphs

Plot Legend—Defines the color and style of plots. Resize the legend
to display multiple plots.

Scale Legend—Defines labels for scales and configures scale
properties.

Graph Palette—Allows you to move the cursor and zoom and pan the
graph or chart while a VI runs.

X Scale and Y Scale—Formats the x- and y-scales.

Refer to the Formatting X- and Y-Scales section of this chapter for
more information about formatting scales.

Cursor Legend (graph only)—Displays a marker at a defined point
coordinate. You can display multiple cursors on a graph.

X Scrollbar—Scrolls through the data in the graph or chart. Use the
scroll bar to view data that the graph or chart does not currently
display.

Digital Display (waveform chart only)—Displays the numeric value
of the chart.

Each graph includes options that you can use to customize the graph to
match your data display requirements. For example, you can modify the
behavior and appearance of graph cursors or configure graph scales. The
following figure shows the elements of a graph.

© National Instruments Corporation

10-15 LabVIEW Fundamentals

Chapter 10

Graphs and Charts

@—»Waveform Graph

y scale name

Poo B de—(D

Ix scale name Mﬂﬂ
Iy scale narme ﬂﬂﬂ

Cursors: | x E |ﬂ ®]
<» cursor 0 73 3.1
£ cursor 1 17 =37
hd
- | »]
a5 0o ®
1 Plot legend 4 Cursor mover 7 Grid mark 10 Y-scale
2 Cursor 5 Cursor legend 8 X-scale 11 Label

3 Scale legend

6 Minor-grid mark

9 Graph palette

LabVIEW Fundamentals

You add most of the items listed in the legend above by right-clicking the
graph, selecting Visible Items from the shortcut menu, and selecting the
appropriate element. Right-click the graph and select the option from the
shortcut menu to set the graph option.

Using Graph Cursors

Use a cursor on a graph to read the exact value of a point on a plot or a point
in the plot area. The cursor value displays in the cursor legend.

Right-click the graph and select Visible Items»Cursor Legend from the
shortcut menu to view the cursor legend. Add a cursor to the graph by
right-clicking anywhere in the cursor legend, selecting Create Cursor, and
selecting a cursor mode from the shortcut menu.

The cursor position is defined by the cursor mode. The cursor includes the
following modes:

e Free—Moves the cursor freely within the plot area, regardless of plot
positions.

¢ Single-Plot—Positions the cursor only on the plot that is associated
with the cursor. You can move the cursor along the associated plot.

10-16 ni.com

Chapter 10 Graphs and Charts

Right-click the cursor legend row and select Snap To from the shortcut
menu to associate one or all plots with the cursor.

e Multi-Plot—Positions the cursor only on a specific data point in the
plot area. The multi-plot cursor reports values at the specified x-value
for all of the plots with which the cursor is associated. You can position
the cursor on any plot in the plot area. Right-click the cursor legend
row and select Snap To from the shortcut menu to associate one or all
plots with the cursor. This mode is valid only for mixed signal graphs.

E Note You cannot change the mode of a cursor after you create it. You must delete the
cursor and create another cursor.

You can customize the appearance of the cursor in several ways. You can
label the cursor on the plot, specify the color of the cursor, and specify line,
point, and cursor style. Right-click the cursor legend row and select items
from the shortcut menu to customize the cursor.

Using Graph Annotations

Use annotations on a graph to highlight data points in the plot area. The
annotation includes a label and an arrow that identifies the annotation and
data point. A graph can have any number of annotations. The following
figure shows an example of a graph using annotations.

Right-click the graph and select Data Operations»Create Annotation
from the shortcut menu to display the Create Annotation dialog box. Use
the Create Annotation dialog box to specify the annotation name and how
the annotation snaps to plots in the plot area.

© National Instruments Corporation 10-17 LabVIEW Fundamentals

Chapter 10 Graphs and Charts

Use the Lock Style pull-down menu in the Create Annotation dialog box
to specify how the annotation snaps to plots in the plot area. The Lock Style
component includes the following options:

¢ Free—Allows you to move the annotation anywhere in the plot area.
LabVIEW does not snap the annotation to any plots in the plot area.

* Snap to All Plots—Allows you to move the annotation to the nearest
data point along any plot in the plot area.

e Snap to One Plot—Allows you to move the annotation only along the
specified plot.

You can customize the behavior and appearance of the annotation in several
ways. You can hide or show the annotation name or arrow in the plot area,
specify the color of the annotation, and specify line, point, and annotation
style. Right-click the annotation and select options from the shortcut menu
to customize the annotation.

To delete the annotation, right-click the annotation and select Delete
Annotation from the shortcut menu. Right-click the graph and select Data
Operations»Delete All Annotations from the shortcut menu to delete all
annotations in the plot area.

Customizing 3D Graphs

The 3D graphs have many options that you can use to customize them,
including 3D plot styles, scale formatting, grids, and plot projection.
Because the 3D graphs use ActiveX technology and VIs that handle

3D representation, you set options for the 3D graphs differently than you
set options for other graphs. While creating an application, use the ActiveX
Property Browser to set properties for a 3D graph. Right-click the 3D graph
and select Property Browser from the shortcut menu to display the
ActiveX Property Browser.

If you want to allow users to change common properties at run time or you
need to set a property programmatically, use the 3D Graph Properties VIs.

Customizing Charts

LabVIEW Fundamentals

Unlike the graph, which displays new data that overwrites any stored data,
the chart updates periodically and maintains a history of the data previously
stored.

You can customize the chart to match your data display requirements.
Options available for all charts include a scroll bar, the scale legend, the
graph palette, a digital display, and representation of scales with respect to

10-18 ni.com

Chapter 10 Graphs and Charts

time. You also can modify the behavior of chart history length, update
modes, and plot displays.

Configuring Chart History Length

LabVIEW stores data points already added to the chart in a buffer, or the
chart history. The default size for a chart history buffer is 1,024 data points.
Right-click the chart and select Chart History Length from the shortcut
menu to configure the history buffer. You can view previously collected
data using the chart scroll bar. Right-click the chart and select Visible
Items»X Scrollbar from the shortcut menu to display a scroll bar.

E Note Large chart history values can be memory intensive.

Configuring Chart Update Modes

You can configure how the chart updates to display new data. Right-click
the chart and select Advanced»Update Mode from the shortcut menu to
set the chart update mode. The chart uses the following modes to display
data:

* Strip Chart—Shows running data continuously scrolling from left to
right across the chart with old data on the left and new data on the right.
A strip chart is similar to a paper tape strip chart recorder. Strip Chart
is the default update mode.

* Scope Chart—Shows one item of data, such as a pulse or wave,
scrolling partway across the chart from left to right. For each new
value, the chart plots the value to the right of the last value. When the
plot reaches the right border of the plotting area, LabVIEW erases the
plot and begins plotting again from the left border. The retracing
display of a scope chart is similar to an oscilloscope.

* Sweep Chart—Works similarly to a scope chart except it shows the
old data on the right and the new data on the left separated by a vertical
line. LabVIEW does not erase the plot in a sweep chart when the plot
reaches the right border of the plotting area. A sweep chart is similar
to an EKG display.

© National Instruments Corporation 10-19 LabVIEW Fundamentals

Chapter 10 Graphs and Charts

Using Overlaid and Stacked Plots

You can display multiple plots on a chart by using a single vertical scale,
called overlaid plots, or by using multiple vertical scales, called stacked
plots. The following figure shows examples of overlaid plots and stacked
plots.

Crverlaid Ploks
1.0-

0.5-

0.0-

-0.5-

-1.0- ,
102 152

Stacked Floks

1.0- o

0.0

-1.0-
1.0- e

0.0- ¢’ -

-1.0- l
102 152

Right-click the chart and select Stack Plots from the shortcut menu to view
the chart plots as multiple vertical scales. Right-click the chart and select
Overlay Plots to view the chart plots as a single vertical scale.

Refer to the Charts VI in the 1abview\examples\general\graphs\
charts.11b for examples of different kinds of charts and the data types
they accept.

LabVIEW Fundamentals 10-20 ni.com

File 1/0

File I/O operations pass data to and from files. Use the File I/O VIs and
functions on the File I/O palette to handle all aspects of file I/O, including
the following:

Opening and closing data files.

Reading data from and writing data to files.

Reading from and writing to spreadsheet-formatted files.
Moving and renaming files and directories.

Changing file characteristics.

Creating, modifying, and reading a configuration file.

You can open, read or write, and close a file using a single VI or function.
You also can use a function to control each step in the process. Use the Read
From Measurement File Express VI and the Write To Measurement File
Express VI to read data from and write data to . 1vm or . tdm files.

Refer to the Using Storage VlIs section of this chapter for more information
about . tdm files.

Basics of File I/0

A typical file I/O operation involves the following process.

1.

Create or open a file. Indicate where an existing file resides or where
you want to create a new file by specifying a path or responding to a

dialog box to direct LabVIEW to the file location. After the file opens,
a refnum represents the file.

Refer to the References to Objects or Applications section of
Chapter 4, Building the Front Panel, for more information about
refnums.

Read from or write to the file.
Close the file.

File I/0 VIs and some File /O functions, such as the Read from Text File
and Write to Text File functions, can perform all three steps for common

© National Instruments Corporation

11-1 LabVIEW Fundamentals

Chapter 11 File 1/0

file I/O operations. The VIs and functions designed for multiple operations
might not be as efficient as the functions configured or designed for
individual operations.

Many File I/O VIs and functions contain flow-through parameters,
typically a refnum or path, that return the same value as the corresponding
input parameter.

Refer to the Flow-Through Parameters section of Chapter 5, Building the
Block Diagram, for more information about flow-through parameters.

Choosing a File I/0 Format

LabVIEW Fundamentals

The VIs on the File I/O palette you use depend on the format of the files.
You can read data from or write data to files in three formats—text, binary,
and datalog. The format you use depends on the data you acquire or create
and the applications that will access that data.

Use the following basic guidelines to determine which format to use:

e If you want to make your data available to other applications, such as
Microsoft Excel, use text files because they are the most common and
the most portable.

* If you need to perform random access file reads or writes or if speed
and compact disk space are crucial, use binary files because they are
more efficient than text files in disk space and in speed.

e If you want to manipulate complex records of data or different data
types in LabVIEW, use datalog files because they are the best way to
store data if you intend to access the data only from LabVIEW and you
need to store complex data structures.

Text files typically take up more memory than binary and datalog files if the
data is not originally in text form, such as graph or chart data, because the
ASCII representation of data usually is larger than the data itself. For
example, you can store the number —123.4567 in 4 bytes as a
single-precision floating-point number. However, its ASCII representation
takes 9 bytes, one for each character.

In addition, it is difficult to randomly access numeric data in text files.
Although each character in a string takes up exactly 1 byte of space, the
space required to express a number as text typically is not fixed. To find the
ninth number in a text file, LabVIEW must first read and convert the
preceding eight numbers.

11-2 ni.com

Chapter 11 File 1/0

Using VIs and Functions for Common File I/0 Operations

The File I/0 palette includes VIs and functions designed for common file
I/0O operations, such as writing to or reading from the following types of
data:

* Numeric values to or from spreadsheet text files
e Characters to or from text files
e Lines from text files

* Data to or from binary files

The following block diagram shows how to use the Write To Spreadsheet
File VI to send numbers to a tab-delimited spreadsheet file. When you run
this VI, LabVIEW prompts you to write the data to an existing file or to
create a new file.

For Loop
N

S

The open, read, and write functions expect a file path input. If you do not
wire a file path, a dialog box appears for you to specify a file to read from
or write to.

Wirite To Spreadsheet File, vi

L

o

EEE}
11
[1]

The File I/0 palette includes functions to control each file I/O operation
individually. Use these functions to create or open a file, read data from or
write data to the file, and close the file. You also can use them to perform
the following tasks:

* Create directories.

* Move, copy, or delete files.
» List directory contents.

* Change file characteristics.

* Manipulate paths.

© National Instruments Corporation 11-3 LabVIEW Fundamentals

Chapter 11 File 1/0

A path, shown as follows, is a LabVIEW data type that identifies the
location of a file on disk.

The path describes the volume that contains the file, the directories between
the top-level of the file system and the file, and the name of the file. Enter
or display a path using the standard syntax for a given platform with the
path control or indicator.

Refer to the Path Controls and Indicators section of Chapter 4, Building
the Front Panel, for more information about path controls and indicators.

The following block diagram shows how to use File I/O functions to send
numeric data to a tab-delimited spreadsheet file. When you run this VI, the
Open/Create/Replace File function opens the numbers . x1s file. The
Write to Text File function writes the string of numbers to the file. The
Close File function closes the file. If you do not close the file, the file stays
in memory and is not accessible from other applications or to other users.

CpenfCreate/
Feplace File wyrite to Text File| |Close File |

. 1
|LChdatatnumbers, xls | _:_D s Dx o—

|1H:||:|en or create ™

abi

=) e

For Loop

N

Randam Murmber (0-1 Array To
o Number (0-1)] Spreadsheet String
]! o5 [-EEA] |

S

i
E-“ 4

LabVIEW Fundamentals

Compare the previous block diagram to the Write to Spreadsheet VI, which
completes the same task. The previous block diagram uses individual
functions for each file operation, including using the Array To Spreadsheet
String function to format the array of numbers as a string. The Write To
Spreadsheet File VI completes multiple file operations, including opening
the file, converting the array of numbers to a string, and closing the file.

11-4 ni.com

Chapter 11 File 1/0

Refer to the Write Datalog File Example VI in the labview\examples\
file\datalog.11b for an example of using File I/O VIs and functions
for advanced operations.

You also can use File I/O functions for disk streaming operations, which
save memory resources by reducing the number of times the function
interacts with the operating system to open and close the file. Disk
streaming is a technique for keeping files open while you perform multiple
write operations, for example, within a loop. Wiring a path control or a
constant to the Write to Text File function, the Write to Binary File
function, or the Write to Spreadsheet File VI adds the overhead of opening
and closing the file each time the function or VI executes. VIs can be more
efficient if you avoid opening and closing the same files frequently.

To create a typical disk-streaming operation, place the
Open/Create/Replace File function before a loop, the read or write function
in the loop, and the Close File function after the loop so continuous writing
to a file can occur within the loop without the overhead associated with
opening and closing the file in each iteration.

Disk streaming is ideal in lengthy data acquisition operations where speed
is critical. You can write data continuously to a file while acquisition is still
in progress. For best results, avoid running other VIs and functions, such as
Analysis VIs and functions, until you complete the acquisition.

Using Storage Vs

Use the Storage VIs on the Storage palette to read and write waveforms
and waveform properties to binary measurement files (. tdm). Use . tdm
files to exchange data between NI software, such as LabVIEW and
DIAdem.

@ Note The Storage VIs are available only on Windows.

The Storage VIs combine waveforms and waveform properties to form
channels. A channel group organizes a set of channels. A file includes a set
of channel groups. If you store channels by name, you can quickly append
data to or retrieve data from an existing channel. In addition to numeric
values, the Storage VIs support arrays of strings and arrays of time stamps.
A reference number represents files, channel groups, and channels on the
block diagram.

© National Instruments Corporation 11-5 LabVIEW Fundamentals

Chapter 11 File 1/0

You also can use the Storage VIs to query files to obtain channel groups or
channels that meet conditions you specify.

If the system requirements change during development and you need to add
additional data to a file, you can change the format of the file without
causing the file to become unusable.

Refer to the labview\examples\file\storage.1l1lb for examples of
using the Storage VIs.

You also can use the Read From Measurement File Express VI and the
Write To Measurement File Express VI to read data from and write data
to . tdm measurement files.

Creating Text and Spreadsheet Files

LabVIEW Fundamentals

To write data to a text file, you must convert your data to a string. To write
data to a spreadsheet file, you must format the string as a spreadsheet string,
which is a string that includes delimiters, such as tabs.

Refer to the Formatting and Parsing Strings section of Chapter 9,
Grouping Data Using Strings, Arrays, and Clusters, for more information
about formatting strings.

Writing text to text files requires no formatting because most word
processing applications that read text do not require formatted text. To write
a text string to a text file, use the Write to Text File function, which
automatically opens and closes the file.

Use the Write to Binary File function to create platform-independent text
files. Use the Read from Binary File function to read platform-independent
text files.

Refer to Creating Binary Files section for more information about binary
files.

Use the Write To Spreadsheet File VI or the Array To Spreadsheet String
function to convert a set of numbers from a graph, a chart, or an acquisition
into a spreadsheet string.

Reading text from a word processing application might result in errors
because word processing applications format text with different fonts,
colors, styles, and sizes that the File I/O VIs cannot process.

11-6 ni.com

Chapter 11 File 1/0

If you want to write numbers and text to a spreadsheet or word processing
application, use the String functions and the Array functions to format the
data and to combine the strings. Then write the data to a file.

Refer to the Editing, Formatting, and Parsing Strings and Array Functions
sections of Chapter 9, Grouping Data Using Strings, Arrays, and Clusters,
for more information about using these functions to format and combine
data.

Formatting and Writing Data to Files

Use the Format Into File function to format string, numeric, path, and
Boolean data as text and to write the formatted text to a file. Often you can
use this function instead of separately formatting the string with the Format
Into String function and writing the resulting string with the Write to Text
File function.

Refer to the Formatting and Parsing Strings section of Chapter 9,
Grouping Data Using Strings, Arrays, and Clusters, for more information
about formatting strings.

Scanning Data from Files

Use the Scan From File function to scan text in a file for string, numeric,
path, and Boolean values and then convert the text into a data type. Often
you can use this function instead of reading data from a file with the Read
from Binary File function or Read from Text File function and scanning the
resulting string with the Scan From String function.

Creating Binary Files

Use the Write to Binary File function to create a binary file. You can wire
any data type to the data input of the Write to Binary File function. Use the
Read from Binary File function to specify the data type of the data in the
file you want to read by wiring a control or constant of that type to the data
type input of the Read from Binary File function. You can use the Write to
Binary File and Read from Binary File functions to read from and write to
text files created on a different operating system.

Creating Datalog Files

You can create and read datalog files by using the Datalog functions on the
Datalog palette to acquire data and write the data to a file.

© National Instruments Corporation 11-7 LabVIEW Fundamentals

Chapter 11 File 1/0

You do not have to format the data in a datalog file. However, when you
write or read datalog files, you must specify the data type. For example, if
you acquire a temperature reading with the time and date the temperature
was recorded, you write the data to a datalog file and specify the data as a
cluster of one number and two strings. Refer to the Simple Temp
Datalogger VIin the labview\examples\file\datalog.11b for an
example of writing data to a datalog file.

If you read a file that includes a temperature reading with the time and date
the temperature was recorded, you specify that you want to read a cluster
of one number and two strings. Refer to the Simple Temp Datalog Reader
VIlin the labview\examples\file\datalog.11lb for an example of
reading a datalog file.

Writing Waveforms to Files

Use the Write Waveforms to File and Export Waveforms to Spreadsheet
File VIs to send waveforms to files. You can write waveforms to
spreadsheet, text, or datalog files.

If you expect to use the waveform you create only in a VI, save the
waveform as a datalog file (. Log).

The following VI acquires multiple waveforms, displays them on a graph,
and writes them to a spreadsheet file.

Al Acquire

channels [0]] [Wavefarms. vi waveforms
170 ULt b k]

—] I%r Ex=port W aveforms to
Eerat | Spreadsheet File. vi

el g

zamplesdch T
[T il
scan rate (1000 [c:\windows\My Documentshwaveforms. xls|
sCansdsec)

k

You also can use the Storage VIs on the Storage palette or the Write To
Measurement File Express VI to write waveforms to files.

LabVIEW Fundamentals 11-8 ni.com

Chapter 11 File 1/0

Reading Waveforms from Files

Use the Read Waveform from File VI to read waveforms from a file. After
you read a single waveform, you can add or edit waveform data
components with the Build Waveform function, or you can extract
waveform attributes with the Get Waveform Attribute function.

The following VI reads a waveform from a file, edits the t0 component of
the waveform, and plots the edited waveform to a graph.

Fiead " avefom from File. vil

g
= Baild W aveform

o edited waveform
2.00H o™

|% Mo Documentstwaveforms. sksf1

The Read Waveform from File VI also reads multiple waveforms from a
file. The VI returns an array of waveform data, which you can display in a
multiplot graph. If you want to access a single waveform from a file, you
must index the array of waveform data, as shown in the following block
diagram. The VI accesses a file that includes multiple waveforms. The
Index Array function reads the first and third waveforms in the file and
plots them on two separate waveform graphs.

Refer to the Arrays section of Chapter 9, Grouping Data Using Strings,
Arrays, and Clusters, for more information about indexing arrays. Refer to
the Waveform Graphs section of Chapter 10, Graphs and Charts, for more
information about waveform graphs.

file pathldialag if empky]

Fiead "+ aveform from File.vi]

mltiple channel waveform graph|

A

P Fo]
[ndew Array

@ wareefarm
b s
== Lwavefurm 2

You also can use the Storage VIs on the Storage palette or the Read From
Measurement File Express VI to read waveforms from a file.

© National Instruments Corporation 11-9 LabVIEW Fundamentals

Documenting and Printing Vis

You can use LabVIEW to document and print VIs.

Document a VI to record information about the block diagram and/or the
front panel at any stage of development.

Some options for printing VIs are more appropriate for printing
information about VIs, and others are more appropriate for reporting the
data and results the VIs generate. Several factors affect which printing
method you use, including if you want to print manually or
programmatically, how many options you need for the report format, if you
need the functionality in the stand-alone applications you build, and on
which platforms you run the VIs.

Documenting Vis

You can use LabVIEW to document a finished VI and create instructions
for users of VIs. You can view documentation within LabVIEW, print it,
and save it to HTML, RTF, or text files.

To create effective documentation for VIs, create VI and object
descriptions.

Create descriptions for VIs and their objects, such as controls and
indicators, to describe the purpose of the VI or object and to give users
instructions for using the VI or object. You can view the descriptions in
LabVIEW, print them, or save them to HTML, RTF, or text files.

Create, edit, and view VI descriptions by selecting File»VI Properties and
selecting Documentation from the Category pull-down menu. Create,
edit, and view object descriptions by right-clicking the object and selecting
Description and Tip from the shortcut menu. Tip strips are brief
descriptions that appear when you move the cursor over an object while a
VI runs. If you do not enter a tip in the Description and Tip dialog box, no
tip strip appears. The VI or object description appears in the Context Help
window when you move the cursor over the VIicon or object, respectively.

E Note You cannot enter a description for a VI or function located on the Functions palette.

© National Instruments Corporation 12-1 LabVIEW Fundamentals

Chapter 12 Documenting and Printing VIs

Printing Vis

You can use the following primary ways to print VIs:
¢ Select File»Print Window to print the contents of the active window.

* Select File»Print to print more comprehensive information about a VI,
including information about the front panel, block diagram, subVTs,
controls, VI history, and so on.

e Programmatically print a VI window or programmatically print or save
a report that contains VI documentation or data the VI returns.

Select File»Print to print VI documentation or save it to HTML, RTF, or
text files. You can select a built-in format or create a custom format for
documentation. The documentation you create can include the following
items:

e Icon and connector pane

e Front panel and block diagram

e Controls, indicators, and data type terminals

e Labels and captions for controls and indicators
e VI and object descriptions

* VI hierarchy

e List of subVIs

e Revision history

@ Note The documentation you create for certain types of VIs cannot include all the
previous items. For example, a polymorphic VI does not have a front panel or a block
diagram, so you cannot include those items in the documentation you create for a
polymorphic VL.

LabVIEW Fundamentals

You can use the HTML or RTF files LabVIEW generates to create your
own compiled help files. (Windows) You can compile the individual HTML
files LabVIEW generates into an HTML Help file. (Mac 0S) You can use
the individual HTML files LabVIEW generates in Apple Help.

You can compile the RTF files LabVIEW generates into a (Windows)
WinHelp or (Linux) HyperHelp file.

12-2 ni.com

Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

Support—Online technical support resources at ni . com/support
include the following:

Self-Help Resources—For answers and solutions, visit the
award-winning National Instruments Web site for software drivers
and updates, a searchable KnowledgeBase, product manuals,
step-by-step troubleshooting wizards, thousands of example
programs, tutorials, application notes, instrument drivers, and

SO on.

Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

For information about other technical support options in your
area, visit ni.com/services or contact your local office at
ni.com/contact.

Training and Certification—Visit ni . com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

If you searched ni . com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation

A-1 LabVIEW Fundamentals

Glossary

Symbol Prefix Value
y yocto 10724
z zepto 102!
a atto 10718
f femto 10715
P pico 1012
n nano 100
u micro 10-°
m milli 1073
c centi 102
d deci 107!

da deka 10!
h hecto 10?
k kilo 103
M mega 106
G giga 10°
T tera 1012
P peta 1013
E exa 1018
Z zetta 10?1
Y yotta 1024

© National Instruments Corporation G-1

LabVIEW Fundamentals

Glossary

Numbers/Symbols

1D
2D

3D

A

A

active window

application

application instance

array

array shell

artificial data
dependency

ASCII

LabVIEW Fundamentals

Infinity.

Delta; difference. x denotes the value by which x changes from one index
to the next.

Pi.
One-dimensional.
Two-dimensional.

Three-dimensional.

Amperes.

Window that is currently set to accept user input, usually the frontmost
window. The title bar of an active window is highlighted. Make a window
active by clicking it or by selecting it from the Windows menu.

Application created using the LabVIEW Development System and
executed in the LabVIEW Run-Time System environment.

Instance of LabVIEW created for each target in a LabVIEW project.
When you open a VI from the Project Explorer window, the VI opens in
the application instance for the target. LabVIEW also creates a main
application instance, which contains open VIs that are not part of a project
and VIs that you did not open from a project. See also target.

Ordered, indexed list of data elements of the same type.

Front panel object that houses an array. An array shell consists of an index
display, a data object window, and an optional label. It can accept various
data types.

Condition in a dataflow programming language in which the arrival of
data, rather than its value, triggers execution of a node.

American Standard Code for Information Interchange.

G-2 ni.com

auto-indexing

autoscaling

block diagram

Boolean controls and
indicators

breakpoint
Breakpoint tool

broken Run button

broken VI

buffer

Bundle function

C

case

Case structure

© National Instruments Corporation G-3

Glossary

Capability of loop structures to disassemble and assemble arrays at their
borders. As an array enters a loop with auto-indexing enabled, the loop
automatically disassembles it extracting scalars from 1D arrays, 1D arrays
extracted from 2D arrays, and so on. Loops assemble data values into
arrays as data values exit the loop in the reverse order.

Ability of scales to adjust to the range of plotted values. On graph scales,
autoscaling determines maximum and minimum scale values.

Pictorial description or representation of a program or algorithm. The
block diagram consists of executable icons called nodes and wires that
carry data between the nodes. The block diagram is the source code for
the VI. The block diagram resides in the block diagram window of the VL.

Front panel objects to manipulate and display Boolean (TRUE or FALSE)
data.

Pause in execution used for debugging.
Tool to set a breakpoint on a VI, node, or wire.

Button that replaces the Run button when a VI cannot run because of
errors.

VI that cannot run because of errors; signified by a broken arrow in the
broken Run button.

Temporary storage for acquired or generated data.

Function that creates clusters from various types of elements.

One subdiagram of a Case structure.

Conditional branching control structure that executes one of its
subdiagrams based on the input to the Case structure. It is the combination
of the IF, THEN, ELSE, and CASE statements in control flow languages.

LabVIEW Fundamentals

Glossary

channel

chart

checkbox

class

cluster

cluster shell

coercion

LabVIEW Fundamentals

1. Physical—a terminal or pin at which you can measure or generate an
analog or digital signal. A single physical channel can include more than
one terminal, as in the case of a differential analog input channel or a
digital port of eight lines. A counter also can be a physical channel,
although the counter name is not the name of the terminal where the
counter measures or generates the digital signal.

2. Virtual—a collection of property settings that can include a name, a
physical channel, input terminal connections, the type of measurement or
generation, and scaling information. You can define NI-DAQmx virtual
channels outside a task (global) or inside a task (local). Configuring
virtual channels is optional in Traditional NI-DAQ (Legacy) and earlier
versions, but is integral to every measurement you take in NI-DAQmx. In
Traditional NI-DAQ (Legacy), you configure virtual channels in MAX. In
NI-DAQmzx, you can configure virtual channels either in MAX or in your
program, and you can configure channels as part of a task or separately.

3. Switch—a switch channel represents any connection point on a switch.
It can be made up of one or more signal wires (commonly one, two, or
four), depending on the switch topology. A virtual channel cannot be
created with a switch channel. Switch channels may be used only in the
NI-DAQmx Switch functions and VIs.

2D display of one or more plots in which the display retains a history of
previous data, up to a maximum that you define. The chart receives the
data and updates the display point by point or array by array, retaining a
certain number of past points in a buffer for display purposes. See also
scope chart, strip chart, and sweep chart.

Small square box in a dialog box you can select or clear. Checkboxes
generally are associated with multiple options that you can set. You can
select more than one checkbox.

A category containing properties, methods, and events. Classes are
arranged in a hierarchy with each class inheriting the properties and
methods associated with the class in the preceding level.

A set of ordered, unindexed data elements of any data type, including
numeric, Boolean, string, array, or cluster. The elements must be all
controls or all indicators.

Front panel object that contains the elements of a cluster.

Automatic conversion LabVIEW performs to change the numeric
representation of a data element.

G-4 ni.com

coercion dot

Coloring tool

compile

conditional terminal

configuration utility

connector

connector pane

constant

Context Help window

control

control flow

Controls palette

conversion

Glossary

Appears on a block diagram node to alert you that you have wired data of
two different numeric data types together. Also appears when you wire
any data type to a variant data type.

Tool to set foreground and background colors.

Process that converts high-level code to machine-executable code.
LabVIEW compiles VIs automatically before they run for the first time
after you create or edit alteration.

Terminal of a While Loop that contains a Boolean value that determines
if the VI performs another iteration.

Refers to Measurement & Automation Explorer on Windows and
configuration utilities for the instrument on Mac OS and Linux.

Part of the VI or function node that contains input and output terminals.
Data values pass to and from the node through a connector.

Region in the upper right corner of a front panel or block diagram window
that displays the VI terminal pattern. It defines the inputs and outputs you
can wire to a VL.

A terminal on the block diagram that supplies fixed data values to the
block diagram. See also universal constant and user-defined constant.

Window that displays basic information about LabVIEW objects when
you move the cursor over each object. Objects with context help
information include VIs, functions, constants, structures, palettes,
properties, methods, events, dialog box components, and items in the
Project Explorer window.

Front panel object for entering data to a VI interactively or to a subVI
programmatically, such as a knob, push button, or dial.

Programming system in which the sequential order of instructions
determines execution order. Most text-based programming languages are
control flow languages.

Palette that contains front panel controls, indicators, and decorative
objects.

Changing the type of a data element.

© National Instruments Corporation G-5 LabVIEW Fundamentals

Glossary

count terminal

current VI

D

DAQ

DAQ Assistant

DAQ device

data acquisition (DAQ)

data dependency

data flow

data type

datalog

datalog file

LabVIEW Fundamentals

Terminal of a For Loop whose value determines the number of times the
For Loop executes its subdiagram.

VI whose front panel, block diagram, or Icon Editor is the active window.

See data acquisition (DAQ) and NI-DAQ.

A graphical interface for configuring measurement tasks, channels, and
scales.

A device that acquires or generates data and can contain multiple channels
and conversion devices. DAQ devices include plug-in drivers, PCMCIA
cards, and DAQPad devices, which connect to a computer USB or 1394
(FireWire™) port. SCXI modules are considered DAQ devices.

1. Acquiring and measuring analog or digital electrical signals from
sensors, acquisition transducers, and test probes or fixtures.

2. Generating analog or digital electrical signals.

Condition in a dataflow programming language in which a node cannot
execute until it receives data from another node. See also artificial data
dependency.

Programming system that consists of executable nodes that execute only
when they receive all required input data. The nodes produce output data
automatically when they execute. LabVIEW is a dataflow system. The
movement of data through the nodes determines the execution order of the
VIs and functions on the block diagram.

Format for information. In LabVIEW, acceptable data types for most VIs
and functions are numeric, array, string, Boolean, path, refnum,
enumerated type, waveform, and cluster.

To acquire data and simultaneously store it in a disk file. LabVIEW File
I/0 VIs and functions can log data.

File that stores data as a sequence of records of a single, arbitrary data type
that you specify when you create the file. Although all the records in a
datalog file must be a single type, that type can be complex. For example,
you can specify that each record is a cluster that contains a string, a
number, and an array.

G-6 ni.com

default

device

dialog box
dimension

directory

discrete
drag

drive

driver

E

edit mode

empty array

error cluster

error in

C1Tor message

error out

© National Instruments Corporation G-7

Glossary

Preset value. Many VI inputs use a default value if you do not specify a
value.

An instrument or controller you can access as a single entity that controls
or monitors real-world I/O points. A device often is connected to a host

computer through some type of communication network. See also DAQ
device and measurement device.

Window that appears when an application needs further information to
carry out a command.

Size and structure of an array.

Structure for organizing files into convenient groups. A directory is like
an address that shows the location of files. A directory can contain files or
subdirectories of files.

Having discontinuous values of the independent variable, usually time.
To use the cursor on the screen to select, move, copy, or delete objects.

Letter in the range a-z followed by a colon (:), to indicate a logical disk
drive.

Software that controls a specific hardware device, such as a DAQ device.

When you can make changes to a VI.

Array that has zero elements but has a defined data type. For example, an
array that has a numeric control in its data display window but has no
defined values for any element is an empty numeric array.

Consists of a Boolean status indicator, a numeric code indicator, and a
string source indicator.

Error cluster that enters a VI.

Indication of a software or hardware malfunction or of an unacceptable
data entry attempt.

The error cluster that leaves a V1.

LabVIEW Fundamentals

Glossary

event

execution highlighting

Express VI

F

Flat Sequence structure

For Loop

frame

free label

frequency

front panel

function

Functions palette

LabVIEW Fundamentals

Condition or state of an analog or digital signal.

Debugging technique that animates VI execution to illustrate the data flow
in the VI.

A subVI designed to aid in common measurement tasks. You configure an
Express VI using a configuration dialog box.

Program control structure that executes its subdiagrams in numeric order.
Use this structure to force nodes that are not data dependent to execute in
the order you want if flow-through parameters are not available. The Flat
Sequence structure displays all the frames at once and executes the frames
from left to right until the last frame executes.

Iterative loop structure that executes its subdiagram a set number of times.
Equivalent to text-based code: For i = 0 ton — 1, do...

Subdiagram of a Flat or Stacked Sequence structure.

Label on the front panel or block diagram that does not belong to any
other object.

f, the basic unit of rate, measured in events or oscillations per second
using a frequency counter or spectrum analyzer. Frequency is the
reciprocal of the period of a signal.

Interactive user interface of a VI. Front panel appearance imitates
physical instruments, such as oscilloscopes and multimeters.

Built-in execution element, comparable to an operator, function, or
statement in a text-based programming language.

Palette that contains VIs, functions, block diagram structures, and
constants.

G-8 ni.com

G

G

General Purpose
Interface Bus

glyph
GPIB

graph

graph control

H

handle

hex

Hierarchy window

I/0

icon
indicator
Inf

instrument driver

Glossary

Graphical programming language LabVIEW uses.

GPIB. Synonymous with HP-IB. The standard bus used for controlling
electronic instruments with a computer. Also called IEEE 488 bus
because it is defined by ANSI/IEEE Standards 488-1978, 488.1-1987,
and 488.2-1992.

Small picture or icon.
See General Purpose Interface Bus.

2D display of one or more plots. A graph receives and plots data as a
block.

Front panel object that displays data in a Cartesian plane.

Pointer to a pointer to a block of memory that manages reference arrays
and strings. An array of strings is a handle to a block of memory that
contains handles to strings.

Hexadecimal. Base-16 number system.

See VI Hierarchy window.

Input/Output. The transfer of data to or from a computer system involving
communications channels, operator input devices, and/or data acquisition
and control interfaces.

Graphical representation of a node on a block diagram.
Front panel object that displays output, such as a graph or LED.
Digital display value for a floating-point representation of infinity.

A set of high-level functions that control and communicate with
instrument hardware in a system.

© National Instruments Corporation G-9 LabVIEW Fundamentals

Glossary

integer

intensity map/plot

iteration terminal

IVI

L

label

Labeling tool

LabVIEW

LED

legend

library

listbox

LLB

marquee

matrix

MAX

LabVIEW Fundamentals

Any of the natural numbers, their negatives, or zero.

Method of displaying three dimensions of data in a 2D plot with the use
of color.

Terminal of a For Loop or While Loop that contains the current number
of completed iterations.

Interchangeable Virtual Instruments. A software standard for creating a
common interface (API) to common test and measurement instruments.

Text object used to name or describe objects or regions on the front panel
or block diagram.

Tool to create labels and enter text into text windows.

Laboratory Virtual Instrument Engineering Workbench. LabVIEW is a
graphical programming language that uses icons instead of lines of text to
create programs.

Light-emitting diode.

Object a graph or chart owns to display the names and plot styles of plots
on that graph or chart.

See LLB or project library.

Box within a dialog box that lists all available choices for a command. For
example, a list of filenames on a disk.

LabVIEW file that contains a collection of related VIs for a specific use.

Moving, dashed border that surrounds selected objects.

A rectangular array of numbers or mathematical elements that represent
the coefficients in a system of linear equations.

See Measurement & Automation Explorer.

G-10 ni.com

Measurement &
Automation Explorer

measurement device

menu bar

method

NaN

NI-DAQ

NI-DAQmx

node

Glossary

The standard National Instruments hardware configuration and diagnostic
environment for Windows.

A DAQ device such as the E Series multifunction I/O (MIO) device, the
SCXI signal conditioning module, and the switch module.

Horizontal bar that lists the names of the main menus of an application.

The menu bar appears below the title bar of a window. Each application
has a menu bar that is distinct for that application, although some menus
and commands are common to many applications.

A procedure that is executed when an object receives a message. A
method is always associated with a class.

Digital display value for a floating-point representation of <Not A
Number>. Typically the result of an undefined operation, such as log(-1).

Driver software included with all NI DAQ devices and signal conditioning
components. NI-DAQ is an extensive library of VIs and functions you can
call from an application development environment (ADE), such as
LabVIEW, to program an NI measurement device, such as the M Series
multifunction I/O (MIO) DAQ devices, signal conditioning modules, and
switch modules.

The latest NI-DAQ driver with new VIs, functions, and development tools
for controlling measurement devices. The advantages of NI-DAQmx over
earlier versions of NI-DAQ include the DAQ Assistant for configuring
channels and measurement tasks for a device for use in LabVIEW,
LabWindows™/CVI™, and Measurement Studio; increased performance
such as faster single-point analog I/O; NI-DAQmx simulation for most
supported devices for testing and modifying applications without
plugging in hardware; and a simpler, more intuitive API for creating DAQ
applications using fewer functions and VIs than earlier versions of
NI-DAQ.

Program execution element. Nodes are analogous to statements,
operators, functions, and subroutines in text-based programming
languages. On a block diagram, nodes include functions, structures, and
subVlIs.

© National Instruments Corporation G-11 LabVIEW Fundamentals

Glossary

non-displayable
characters

numeric controls and

indicators

0

object

one-dimensional

Operating tool

operator

P

palette

picture

pixel

plot

point

polymorphism

Positioning tool
probe

Probe tool

LabVIEW Fundamentals

ASCII characters that cannot be displayed, such as null, backspace, tab,
and so on.

Front panel objects to manipulate and display numeric data.

Generic term for any item on the front panel or block diagram, including
controls, indicators, nodes, wires, and imported pictures.

Having one dimension, as in the case of an array that has only one row of
elements.

Tool to enter data into controls or to operate them.

Person who initiates and monitors the operation of a process.

Displays objects or tools you can use to build the front panel or block
diagram.

Series of graphics instructions that a picture indicator uses to create a
picture.

Smallest unit of a digitized picture.

Graphical representation of an array of data shown either on a graph or a
chart.

Cluster that contains two 16-bit integers that represent horizontal and
vertical coordinates.

Ability of a node to automatically adjust to data of different
representation, type, or structure.

Tool to move and resize objects.
Debugging feature for checking intermediate values in a VI.

Tool to create probes on wires.

G-12 ni.com

project
Project Explorer
window

project library

prototype

pull-down menus

pulse

PXI

R

range

rectangle

refnum

representation

resizing circles
or handles

© National Instruments Corporation G-13

Glossary

A collection of LabVIEW files and non-LabVIEW files that you can use
to create build specifications and deploy or download files to targets.

Window in which you can create and edit LabVIEW projects.

A collection of VlIs, type definitions, shared variables, palette menu files,
and other files, including other project libraries.

Simple, quick implementation of a particular task to demonstrate that the
design has the potential to work. The prototype usually has missing
features and might have design flaws. In general, prototypes should be
thrown away, and the feature should be reimplemented for the final
version.

Menus accessed from a menu bar. Pull-down menu items are usually
general in nature.

A signal whose amplitude deviates from zero for a short period of time.

PCI eXtensions for Instrumentation. A modular, computer-based
instrumentation platform.

Region between the limits within which a quantity is measured, received,
or transmitted. Expressed by stating the lower and upper range values.

Cluster that contains four 16-bit integers. The first two values describe the
vertical and horizontal coordinates of the top left corner. The last two
values describe the vertical and horizontal coordinates of the bottom right
corner.

Reference number. An identifier that LabVIEW uses as reference to an
object such as a VI, application, or an ActiveX or .NET object. Use a
refnum as an input parameter for a function or VI to perform an operation
on the object.

Subtype of the numeric data type, of which there are 8-, 16-, and 32-bit
signed and unsigned integers, as well as single-, double-, and
extended-precision, floating-point numbers.

Circles or handles that appear on the borders of an object to indicate the
points where you can resize the object.

LabVIEW Fundamentals

Glossary

ring control

run mode

sample

scalar

scale

scope chart

sequence structure

shift register

shortcut menu

slider

source control

LabVIEW Fundamentals

Special numeric control that associates 32-bit integers, starting at 0 and
increasing sequentially, with a series of text labels or graphics.

When a VI is running or reserved to run. A VI enters run mode when you
click the Run or Run Continuously buttons on the front panel toolbar,
the single-stepping buttons on the block diagram toolbar, or select
Operate»Change to Run Mode. In run mode, all front panel objects have
an abridged set of shortcut menu items. You cannot edit a VI while the
VI runs.

Single analog or digital input or output data point.

Number that a point on a scale can represent. A single value as opposed
to an array. Scalar Boolean values and clusters are explicitly singular
instances of their respective data types.

Part of graph, chart, and some numeric controls and indicators that
contains a series of marks or points at known intervals to denote units of
measure.

Numeric indicator modeled on the operation of an oscilloscope.
See Flat Sequence structure or Stacked Sequence structure.

Optional mechanism in loop structures to pass the value of a variable from
one iteration of a loop to a subsequent iteration. Shift registers are similar
to static variables in text-based programming languages.

Menu accessed by right-clicking an object. Menu items pertain to that
object specifically.

Moveable part of slide controls and indicators.

A solution to the problem of sharing VIs and controlling access to avoid
accidental loss of data. You can use a source control provider to share files
among multiple users, improve security and quality, and track changes to
shared projects. Also called source code control.

G-14 ni.com

Stacked Sequence
structure

string

string controls and
indicators

strip chart

structure

subdiagram
subVI

sweep chart

syntax

T

target

terminal

tip strip

tool

toolbar

Glossary

Program control structure that executes its subdiagrams in numeric order.
Use this structure to force nodes that are not data dependent to execute in
the order you want if flow-through parameters are not available. The
Stacked Sequence structure displays each frame so you see only one
frame at a time and executes the frames in order until the last frame
executes.

Representation of a value as text.

Front panel objects to manipulate and display text.

Numeric plotting indicator modeled after a paper strip chart recorder,
which scrolls as it plots data.

Program control element, such as a Flat Sequence structure, Stacked
Sequence structure, Case structure, For Loop, or While Loop.

Block diagram within the border of a structure.
VI used on the block diagram of another VI. Comparable to a subroutine.

Numeric indicator modeled on the operation of an oscilloscope. It is
similar to a scope chart, except that a line sweeps across the display to
separate old data from new data.

Set of rules to which statements must conform in a particular
programming language.

A device or machine on which a VI runs. You must use a LabVIEW
project to work with an RT, FPGA, or PDA target.

Object or region on a node through which data values pass.

Small yellow text banners that identify the terminal name and make it
easier to identify terminals for wiring.

Special cursor to perform specific operations.

Bar that contains command buttons to run and debug VIs.

© National Instruments Corporation G-15 LabVIEW Fundamentals

Glossary

Tools palette

top-level VI

trigger
tunnel

two-dimensional

u

universal constant

user

user-defined constant

V
VI

VI Hierarchy window

virtual instrument (VI)

Virtual Instrument
Software Architecture

VISA

W

waveform

waveform chart

LabVIEW Fundamentals

Palette that contains tools you can use to edit and debug front panel and
block diagram objects.

VI at the top of the VI hierarchy. This term distinguishes the VI from its
subVIs.

Any event that causes or starts some form of data capture.
Data entry or exit terminal on a structure.

Having two dimensions, as in the case of an array that has several rows
and columns.

Block diagram object you cannot edit that emits a particular ASCII
character or standard numeric constant, for example, 7.

See operator.

Block diagram object that emits a value you set.

See virtual instrument (VI).
Window that graphically displays the hierarchy of VIs and subVIs.

Program in LabVIEW that models the appearance and function of a
physical instrument.

VISA. Single interface library for controlling GPIB, VXI, RS-232, and
other types of instruments.

See Virtual Instrument Software Architecture.

Multiple voltage readings taken at a specific sampling rate.

Indicator that plots data points at a certain rate.

G-16 ni.com

While Loop
wire

wire branch

wire segment

wire stubs

Wiring tool

wizard

Glossary

Loop structure that repeats a section of code until a condition occurs.
Data path between nodes.

Section of wire that contains all the wire segments from junction to
junction, terminal to junction, or terminal to terminal if there are no
junctions between.

Single horizontal or vertical piece of wire.

Truncated wires that appear next to unwired terminals when you move the
Wiring tool over a VI or function node.

Tool to define data paths between terminals.

A dialog box with a sequence of pages through which you can move
forward and backward as you fill in information.

© National Instruments Corporation G-17 LabVIEW Fundamentals

Index

Numerics
3D graphs, 10-10

A

abridged menus, 3-4
adding
space to front panel, 4-15
terminals to functions, 5-5
additional documentation, 1-1
See also related documentation
aligning objects, 4-14
annotations
See also labeling
using, 10-17
Application Builder
readme, 1-3
application font, 4-16
arrays
auto-indexing loops, 8-5
building with loops, 8-7
controls and indicators, 4-7
creating constants, 9-7
creating controls and indicators, 9-7
default data, 9-10
dimensions, 9-4
examples of 1D arrays, 9-5
examples of 2D arrays, 9-6
indexes in multidimensional arrays, 9-4
indexes on multidimensional arrays, 9-7
restrictions, 9-4
size of, 9-10
artificial data dependency, 5-11
auto-indexing
default data, 8-11
For Loops, 8-6
While Loops, 8-6

© National Instruments Corporation -1

automatic wiring, 5-8

binary
creating files, 11-7
block diagram, 2-2
adding terminals to functions, 5-5
coercion dots, 5-9
constants, 5-3
data flow, 5-9
data types, 5-2
designing, 5-13
displaying terminals, 5-1
fonts, 4-16
functions, 5-4
labels, 4-16
nodes, 5-3
objects, 5-1
options, 3-7
removing terminals from functions, 5-5
structures, 8-1
terminals for controls and indicators, 5-1
wiring automatically, 5-8
wiring manually, 5-6
Boolean controls and indicators, 4-5
Breakpoint tool
debugging VIs, 6-4
broken VIs
common causes, 6-3
correcting, 6-2
displaying errors, 6-2
broken wires, 5-8
building
block diagram, 5-1
front panel, 4-1

LabVIEW Fundamentals

Index

polymorphic VIs, 7-6
subVlIs, 7-1

buttons
front panel, 4-5

C

Case structures
data types, 8-12
error handling, 6-7
executing, 8-11
selector terminals, 8-12
specifying a default case, 8-12
certification (NI resources), A-1
characters
formatting, 4-16
charts, 10-1
customizing appearance, 10-15
customizing behavior, 10-18
graph palette, 10-14
history length, 10-19
intensity, 10-4
multiple scales, 10-13
options, 10-13
overlaid plots, 10-20
scale formatting, 10-13
scrolling, 10-15
stacked plots, 10-20
types, 10-1
update mode, 10-19
waveform, 10-3
classic controls and indicators, 4-2
clusters
constants, 9-11
controls and indicators, 4-7
creating, 9-11
error, 6-6
order of elements, 9-11
wire patterns, 9-10
coercion dots, 5-9

LabVIEW Fundamentals -2

color
high-color controls and indicators, 4-2
low-color controls and indicators, 4-2
mapping, 10-7
options, 3-7
coloring
front panel objects, 4-14
combo boxes, 4-6
communication
file I/O, 11-1
computer-based instruments
configuring, 1-4
conditional terminals, 8-3
configuring
front panel controls, 4-12
front panel indicators, 4-12
front panels, 4-13
VI appearance and behavior, 7-7
connecting terminals, 5-6
connector panes, 2-5
building, 7-3
printing, 12-2
constants, 5-3
arrays, 9-7
clusters, 9-11
containers, 4-9
subpanel controls, 4-9
tab controls, 4-9
Context Help window, 3-5
creating object descriptions, 12-1
creating VI descriptions, 12-1
continuously running VIs, 6-1
control flow programming model, 5-10
controls, 4-1
array, 4-7
Boolean, 4-5
changing to indicators, 4-13
classic, 4-2
cluster, 4-7
coloring, 4-14

ni.com

data type terminals, 5-1
data types, 5-2

dialog, 4-2

displaying optional elements, 4-13
enumerated type, 4-8
grouping, 4-14
guidelines for using on front panel, 4-17
hiding, 4-13

high-color, 4-2

1/0 name, 4-10

icons, 5-1

listbox, 4-7

locking, 4-14

low-color, 4-2

matrix, 4-7

modern, 4-2

navigating, 3-2
numeric, 4-3

on block diagram, 5-1
optional elements, 4-13
palette, 3-1

path, 4-7

printing, 12-2

refnum, 4-11

replacing, 4-13
resizing, 4-15

ring, 4-8

rotary, 4-4

scroll bar, 4-4
searching, 3-2

slide, 4-3

string, 4-6

string display types, 9-2
tab, 4-9

table, strings in, 9-2
terminals, 5-1

time stamp, 4-4

user interface design, 4-17

© National Instruments Corporation -3

Index

Controls palette, 3-1
navigating, 3-2
searching, 3-2
correcting
broken VIs, 6-2
broken wires, 5-8
VIs with unexpected data, 6-3
count terminals, 8-2
auto-indexing to set, 8-6
creating
arrays, 9-7
binary files, 11-7
clusters, 9-11
datalog files, 11-8
icons, 7-2
object descriptions, 12-1
spreadsheet files, 11-6
subVlIs, 7-1
subVIs from sections of a VI, 7-4
text files, 11-6
tip strips, 12-1
user-defined constants, 5-3
VI descriptions, 12-1
cursors
graph, 10-16
customizing
palettes, 3-7
VI appearance and behavior, 7-7
work environment, 3-7

D

DAQ
passing channel names, 4-10
data dependency, 5-10
artificial, 5-11
missing, 5-11
data flow. See dataflow
data types, 5-2
case selector values, 8-12
control and indicator, 5-2

LabVIEW Fundamentals

Index

default values, 5-2

printing, 12-2

waveform, 10-3
dataflow

observing, 6-3
dataflow programming model, 5-9

managing memory, 5-12
datalog files

creating, 11-8

reading from, 11-8
debugging

automatic error handling, 6-5

broken VlIs, 6-2

error handling, 6-5

loops, 8-11

options, 3-7

single-stepping, 6-4

techniques, 6-3

undefined data, 5-3

using execution highlighting, 6-3

using the Breakpoint tool, 6-4
default cases, 8-12
default data

arrays, 9-10

loops, 8-11
default values

data types, 5-2
deleting

broken wires, 5-8
designing

block diagram, 5-13

dialog boxes, 4-17

front panel, 4-17

user interfaces, 4-17
diagnostic tools (NI resources), A-1
dialog boxes

controls, 4-2

designing, 4-17

font, 4-16

indicators, 4-2

LabVIEW Fundamentals -4

labels, 4-2

ring controls, 4-8
dials

See also numeric

front panel, 4-4
digital data

digital waveform data type, 10-10
digital graphs, 10-7
digital waveform data type, 10-10
digital waveform graph

displaying digital data in, 10-7

dimensions

arrays, 9-4
disk space

options, 3-7
disk streaming, 11-5
displaying

errors, 6-2

optional elements in front panel
objects, 4-13
terminals, 5-1
warnings, 6-2
distributing
objects on the front panel, 4-14
documentation, 1-1
See also related documentation
guide, 1-1
NI resources, A-1
using with other resources, 1-1
documenting VIs
creating object descriptions, 12-1
creating tip strips, 12-1
creating VI descriptions, 12-1
help files, 12-2
printing, 12-2
dots
coercion, 5-9
drivers (NI resources), A-1

ni.com

E

enumerated type controls, 4-8
errors
automatically handling, 6-5
broken VIs, 6-2
checking for, 6-5
clusters, 6-6
codes, 6-6
debugging techniques, 6-3
displaying, 6-2
finding, 6-2
handling, 6-5
handling automatically, 6-5
handling using Case structures, 6-7
handling using While Loops, 6-7
I/0, 6-6
list, 6-2
methods to handle, 6-6
window, 6-2
examples, 1-4
NI resources, A-1
execution
debugging VlIs, 6-3
flow, 5-9
highlighting, 6-3
Express VIs and functions
overview, 5-5

F

Feedback Node
initializing, 8-10
replacing with shift registers, 8-11
selecting, 8-10

file I/O, 11-1
advanced file functions, 11-3
basic operation, 11-1
creating binary files, 11-7
creating datalog files, 11-8
creating spreadsheet files, 11-6

© National Instruments Corporation -5

Index

creating text files, 11-6
disk streaming, 11-5
formats, 11-2
functions for common operations, 11-3
paths, 11-4
reading datalog files, 11-8
reading waveforms, 11-9
refnums, 11-1
spreadsheet files, 11-6
using Storage VIs, 11-5
VIs for common operations, 11-3
writing waveforms, 11-8
finding
controls, VIs, and functions on the
palettes, 3-2
errors, 6-2
fixing
VIs, 6-2
Flat Sequence structures
executing, 8-14
floating-point numbers
overflow and underflow, 5-3
flow of execution, 5-9
fonts
application, 4-16
dialog, 4-16
options, 3-7
settings, 4-16
system, 4-16
For Loops
auto-indexing, 8-6
controlling timing, 8-5
count terminals, 8-2
default data, 8-11
executing, 8-2
iteration terminals, 8-2
shift registers, 8-7
format string parameters, 9-4
formats for file I/0, 11-2

LabVIEW Fundamentals

Index

formatting
specifiers in strings, 9-4
strings, 9-3
text on front panel, 4-16
free labels, 4-16
front panel, 2-2
adding space without resizing, 4-15
aligning objects, 4-14
changing controls to indicators, 4-13
changing indicators to controls, 4-13
coloring objects, 4-14
controls, 4-1
designing, 4-17
displaying optional object elements, 4-13
distributing objects, 4-14
fonts, 4-16
grouping objects, 4-14
hiding optional elements, 4-13
indicators, 4-1
labels, 4-16
loading in subpanel controls, 4-9
locking objects, 4-14
options, 3-7
overlapping objects, 4-9
replacing objects, 4-13
resizing objects, 4-15
spacing objects evenly, 4-14
terminals, 5-1
text characteristics, 4-16
full menus, 3-4
functions, 5-4
adding terminals, 5-5
navigating, 3-2
removing terminals, 5-5
searching, 3-2
Functions palette, 3-2
customizing, 3-7
navigating, 3-2
searching, 3-2

LabVIEW Fundamentals -6

G

gauges
See also numeric
front panel, 4-4
getting started, 1-2
GPIB
configuring, 1-4
graph palette, 10-14
graphs, 10-1
3D, 10-10
annotating data points, 10-17
cursors, 10-16
customizing 3D, 10-18
customizing appearance, 10-15
customizing behavior, 10-15
intensity, 10-4
multiple scales, 10-13
options, 10-13
palette, 10-14
scale formatting, 10-13
scaling, 10-13
scrolling, 10-15
types, 10-1
waveform, 10-2
XY, 10-3
gray dots on block diagram, 5-9
grid, 4-14
options, 3-7
grouping
data in arrays, 9-4
data in clusters, 9-10
data in strings, 9-1
front panel objects, 4-14

H

hardware
configuring, 1-4
help
See also Context Help window

ni.com

technical support, A-1
help files

creating, 12-2

HTML, 12-2

RTF, 12-2
help system

related documentation, 1-1
hiding

menu bars, 4-17

optional elements in front panel

objects, 4-13

scroll bars, 4-17
hierarchy of VIs

printing, 12-2

viewing, 7-4
highlighting execution

debugging VlIs, 6-3
history

charts, 10-19

options, 3-7
horizontal scroll bar, 4-4
HTML

help files, 12-2

1/0

See also file 1/0

error, 6-6

name controls and indicators, 4-10
icons, 2-5

creating, 7-2

editing, 7-2

printing, 12-2
incrementally running VIs, 6-4
indexes

using on arrays, 9-4
indexing loops, 8-5

For Loops, 8-6

While Loops, 8-6

© National Instruments Corporation -7

Index

indicators, 4-1

array, 4-7

Boolean, 4-5

changing to controls, 4-13

classic, 4-2

cluster, 4-7

coloring, 4-14

data type terminals, 5-1

data types, 5-2

dialog, 4-2

displaying optional elements, 4-13

grouping, 4-14

guidelines for using on front panel, 4-17

hiding, 4-13

high-color, 4-2

1/0 name, 4-10

icons, 5-1

locking, 4-14

low-color, 4-2

matrix, 4-7

modern, 4-2

numeric, 4-3

on block diagram, 5-1

optional elements, 4-13

path, 4-7

printing, 12-2

replacing, 4-13

resizing, 4-15

rotary, 4-4

scroll bar, 4-4

slide, 4-3

string, 4-6

string display types, 9-2

tab, 4-9

terminals, 5-1

time stamp, 4-4

user interface design, 4-17
infinite While Loops, 8-5
infinity floating-point value, 5-3

LabVIEW Fundamentals

Index

installing
LabVIEW, 1-2
instances of polymorphic VIs
See also polymorphic VIs
selecting manually, 7-5
instrument drivers (NI resources), A-1
instruments
configuring, 1-4
integers
overflow and underflow, 5-3
intensity charts, 10-4
color mapping, 10-7
options, 10-5
intensity graphs, 10-4
color mapping, 10-7
options, 10-6
introduction to LabVIEW, 1-1
iteration terminals
For Loops, 8-2
While Loops, 8-4
IVI
passing logical names, 4-10

K

knobs
See also numeric
front panel, 4-4
KnowledgeBase, A-1
known issues, 1-3

L

labeling
constants, 5-3
fonts, 4-16
labels
dialog box, 4-2
LabVIEW
customizing, 3-7
installing, 1-2

LabVIEW Fundamentals -8

introduction, 1-1
options, 3-7
uninstalling, 1-2
launching
LabVIEW, 3-1
lights on front panel, 4-5
listboxes, 4-7
controls, 4-7
locking
front panel objects, 4-14
loops
auto-indexing, 8-5
building arrays, 8-7
controlling timing, 8-5
default data, 8-11
For (overview), 8-2
infinite, 8-5
shift registers, 8-7
While (overview), 8-3

mapping colors for intensity graphs and
charts, 10-7
matrices
controls and indicators, 4-7
Measurement & Automation Explorer, 1-4
memory
coercion dots, 5-9
managing with dataflow programming
model, 5-12
menu bars
hiding, 4-17
menus, 3-4
abridged, 3-4
combo boxes, 4-6
ring controls, 4-8
shortcut, 3-4
meters
See also numeric
front panel, 4-4

ni.com

most recently used menu items, 3-4
MRU menu items, 3-4

naming
Vs, 7-6
National Instruments support and
services, A-1
navigating
Controls and Functions palette, 3-2
Navigation window
features, 3-6
needles
accessing from the shortcut menu, 4-4
NI support and services, A-1
nodes, 2-4
block diagram, 5-3
execution flow, 5-10
not a number floating-point value, 5-3
numbers
overflow and underflow, 5-3
numeric
controls and indicators, 4-3
formatting, 4-3
symbolic values, 5-3

0

objects

aligning, 4-14

block diagram, 5-1

changing controls to and from
indicators, 4-13

coloring on front panel, 4-14

creating descriptions, 12-1

creating tip strips, 12-1

displaying optional elements, 4-13

distributing, 4-14

front panel and block diagram
terminals, 5-1

© National Instruments Corporation -9

Index

grouping on the front panel, 4-14
hiding on front panel, 4-13
labeling, 4-16
locking on the front panel, 4-14
optional elements, 4-13
overlapping on front panel, 4-9
printing descriptions, 12-2
replacing on front panel, 4-13
resizing on front panel, 4-15
spacing evenly, 4-14
wiring automatically on block
diagram, 5-8
wiring manually on block diagram, 5-6
options
setting, 3-7
order of cluster elements, 9-11
order of execution, 5-9
overflow in numbers, 5-3
overlaid plots, 10-20
overlapping front panel objects, 4-9
owned labels, 4-16

P

palettes
Controls, 3-1
customizing, 3-7
customizing Controls, 3-7
customizing Functions, 3-7
Functions, 3-2
navigating, 3-2
options, 3-7
Tools, 3-3
parameter lists. See connector panes
parameters
data types, 5-2
flow-through, 5-12
paths
controls and indicators, 4-7
file I/O, 11-4
options, 3-7

LabVIEW Fundamentals

Index

patterns
terminal, 7-3
performance
options, 3-7
pictures
ring controls, 4-8
plots
overlaid, 10-20
stacked, 10-20
polymorphic
building VIs, 7-6
VIs, 7-5
pop-up menus. See shortcut menus
preferences. See options
previous versions
saving Vs, 7-7
printing
documentation of VIs, 12-2
options, 3-7
programming examples, 1-4
NI resources, A-1
pull-down menus on front panel, 4-8

Q

quick reference card, 1-2

R

radio buttons controls, 4-5
reading
files, 11-1
refnums
controls, 4-11
file I/O, 11-1
related documentation, 1-1
See also documentation
release notes, 1-2
removing
broken wires, 5-8
terminals from functions, 5-5

LabVIEW Fundamentals

I-10

repeating

blocks of code, 8-1
Repeat-Until Loops. See While Loops
replacing

front panel objects, 4-13
resizing

front panel objects, 4-15
revision history

printing, 12-2
ring controls, 4-8
rotary controls and indicators, 4-4
running VIs, 6-1
run-time

shortcut menus, 3-4

S

saving VIs
for previous versions, 7-7
scaling
graphs, 10-13
scope chart, 10-19
scroll bar controls, 4-4
scroll bars
hiding, 4-17
listboxes, 4-7
scrolling
charts, 10-15
graphs, 10-15
searching
for controls, VIs, and functions on the
palettes, 3-2
selecting
wires, 5-8
selector terminal values, 8-12
sequence structures
comparing Flat to Stacked, 8-13
controlling execution order, 5-11
overusing, 8-14
setting
work environment options, 3-7

ni.com

shift registers, 8-7
shortcut menus, 3-4
in run mode, 3-4
shortened menus, 3-4
simple menus, 3-4
single-stepping
debugging VlIs, 6-4
sink terminals. See indicators
sizing. See resizing
slide controls and indicators, 4-3
See also numeric
sliders
adding, 4-3
snap-to grid, 4-14
software (NI resources), A-1
source code. See block diagram
source terminals. See controls
space
adding to front panel or block
diagram, 4-15
spacing objects evenly, 4-14
speed of execution
controlling, 8-5
spreadsheet files
creating, 11-6
stacked plots, 10-20
Stacked Sequence structures
executing, 8-14
statements. See nodes
stepping through VIs
debugging VlIs, 6-4
strings, 9-1
combo boxes, 4-6
controls, 4-6
display types, 9-2
editing programmatically, 9-3
formatting, 9-3
formatting specifiers, 9-4
indicators, 4-6
tables, 9-2
strip chart, 10-19

© National Instruments Corporation I-11

Index

structures, 8-1

Case, 8-11

Event, 8-15

Flat Sequence, 8-14

For Loops, 8-2

on block diagram, 2-5

Stacked Sequence, 8-14

While Loops, 8-3
subpanel controls, 4-9
subroutines. See subVIs
subVlIs, 7-1

building, 7-1

creating, 7-1

creating from sections of a VI, 7-4

hierarchy, 7-4

polymorphic VIs, 7-5
support

technical, A-1
sweep chart, 10-19
switches

front panel, 4-5
symbolic numeric values, 5-3
system

controls and indicators, 4-2
system font, 4-16

T

tab controls, 4-9
tables, 4-8
tanks
See also numeric
slide controls and indicators, 4-3
technical support, A-1
templates
VIs, 7-1
terminals, 2-3
adding to functions, 5-5
auto-indexing to set count, 8-6
block diagram, 5-1
coercion dots, 5-9

LabVIEW Fundamentals

Index

conditional, 8-3 tunnels, 8-1

constants, 5-3 input and output, 8-13

control and indicator, 5-1 type controls

count, 8-2 enumerated, 4-8

displaying, 5-1

iteration on For Loops, 8-2

iteration on While Loops, 8-4 U

patterns, 7-3 undefined data, 5-3

printing, 12-2 arrays, 9-10

removing from functions, 5-5 infinity, 5-3

selector, 8-12 not a number, 5-3

wiring, 5-6 underflow in numbers, 5-3
text unexpected data, 5-3

entry boxes, 4-6 ungrouping

formatting, 4-16 front panel objects, 4-14

ring controls, 4-8 uninstalling LabVIEW, 1-2
text files unlocking

binary format, 11-7 front panel objects, 4-14

creating, 11-6 upgrade notes, 1-2

creating for multiple platforms, 11-7 upgrading VIs, 7-7
thermometers user interface. See front panel

See also numeric user manual, 1-2

slide controls and indicators, 4-3
time stamp V

See also numeric
versions

saving VIs for previous, 7-7

controls and indicators, 4-4

timing
controlling, 8-5 vertical scroll bar, 4-4
tip strips VI Hierarchy window
creating, 12-1 displaying, 7-4
toolbars, 3-5 printing, 12-2
project, 3-5 VIs, 2-1
tools broken, 6-2
getting started, 1-4 configuring appearance and behavior, 7-7

correcting, 6-2

creating descriptions, 12-1
debugging techniques, 6-3
documenting, 12-1

error handling, 6-5
examples, 1-4

hierarchy, 7-4

palette, 3-3
training (NI resources), A-1
tree controls, 4-7
troubleshooting

See also debugging

NI resources, A-1

LabVIEW Fundamentals -12 ni.com

naming, 7-6
polymorphic, 7-5
printing, 12-2
running, 6-1
templates, 7-1
upgrading, 7-7
VISA
passing resource names, 4-10

W

warnings
displaying, 6-2
waveform
charts, 10-3
data type, 10-3
graphs, 10-2
reading from files, 11-9
writing to files, 11-8
‘Web resources, A-1
While Loops
auto-indexing, 8-6
conditional terminals, 8-3
controlling timing, 8-5
default data, 8-11
error handling, 6-7
executing, 8-3
infinite, 8-5
iteration terminals, 8-4
shift registers, 8-7

© National Instruments Corporation

1-13

Index

wires, 2-4
broken, 5-8
selecting, 5-8
wiring
automatically, 5-8
manually, 5-7
objects, 5-7
wizards, 1-4
work environment options
setting, 3-7
writing
files, 11-1

X

x-scales
multiple, 10-13
XY graphs, 10-3

Y

y-scales
multiple, 10-13

LabVIEW Fundamentals

	LabVIEW Fundamentals
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions

	Chapter 1 Introduction to LabVIEW
	LabVIEW Documentation Resources
	LabVIEW Help
	Print Documents
	Readme Documents

	LabVIEW VI Templates, Example VIs, and Tools
	LabVIEW VI Templates
	LabVIEW Example VIs
	LabVIEW Tools for DAQ Configuration (Windows)

	Chapter 2 Introduction to Virtual Instruments
	Front Panel
	Block Diagram
	Terminals
	Nodes
	Wires
	Structures

	Icon and Connector Pane
	Using and Customizing VIs and SubVIs

	Chapter 3 LabVIEW Environment
	Getting Started Window
	Controls Palette
	Functions Palette
	Navigating the Controls and Functions Palettes
	Tools Palette
	Menus and Toolbars
	Menus
	Shortcut Menus

	VI Toolbar
	Project Explorer Window Toolbars

	Context Help Window
	Project Explorer Window
	Navigation Window
	Customizing Your Work Environment
	Customizing the Controls and Functions Palettes
	Setting Work Environment Options

	Chapter 4 Building the Front Panel
	Front Panel Controls and Indicators
	Styles of Controls and Indicators
	Modern and Classic Controls and Indicators
	System Controls and Indicators

	Numeric Displays, Slides, Scroll Bars, Knobs, Dials, and Time Stamps
	Numeric Controls and Indicators
	Slide Controls and Indicators
	Scroll Bar Controls and Indicators
	Rotary Controls and Indicators
	Time Stamp Control and Indicator

	Graphs and Charts
	Buttons, Switches, and Lights
	Radio Buttons Controls

	Text Entry Boxes, Labels, and Path Displays
	String Controls and Indicators
	Combo Box Controls
	Path Controls and Indicators

	Array, Matrix, and Cluster Controls and Indicators
	Listboxes, Tree Controls, and Tables
	Listboxes
	Tree Controls
	Tables

	Ring and Enumerated Type Controls and Indicators
	Ring Controls
	Enumerated Type Controls

	Container Controls
	Tab Controls
	Subpanel Controls

	I/O Name Controls and Indicators
	Waveform Control
	Digital Waveform Control
	Digital Data Control

	References to Objects or Applications
	.NET and ActiveX Controls (Windows)

	Configuring Front Panel Objects
	Showing and Hiding Optional Elements
	Changing Controls to Indicators and Indicators to Controls
	Replacing Front Panel Objects

	Configuring the Front Panel
	Coloring Objects
	Aligning and Distributing Objects
	Grouping and Locking Objects
	Resizing Objects
	Adding Space to the Front Panel without Resizing the Window

	Labeling
	Text Characteristics
	Designing User Interfaces
	Using Front Panel Controls and Indicators
	Designing Dialog Boxes

	Chapter 5 Building the Block Diagram
	Block Diagram Objects
	Block Diagram Terminals
	Control and Indicator Data Types
	Constants

	Block Diagram Nodes
	Polymorphic VIs and Functions

	Functions Overview
	Adding Terminals to Functions
	Built-in VIs and Functions

	Express VIs
	Using Wires to Link Block Diagram Objects
	Wire Appearance and Structure
	Wiring Objects
	Bending Wires
	Undoing Wires
	Automatically Wiring Objects
	Selecting Wires

	Correcting Broken Wires
	Coercion Dots

	Block Diagram Data Flow
	Data Dependency and Artificial Data Dependency
	Missing Data Dependencies
	Flow-Through Parameters

	Data Flow and Managing Memory

	Designing the Block Diagram

	Chapter 6 Running and Debugging VIs
	Running VIs
	Correcting Broken VIs
	Finding Causes for Broken VIs
	Common Causes of Broken VIs

	Debugging Techniques
	Execution Highlighting
	Single-Stepping
	Probe Tool
	Breakpoints

	Handling Errors
	Error Clusters
	Using While Loops for Error Handling
	Using Case Structures for Error Handling

	Chapter 7 Creating VIs and SubVIs
	Searching for Examples
	Using Built-In VIs and Functions
	Creating SubVIs
	Creating an Icon
	Building the Connector Pane
	Creating SubVIs from Sections of a VI
	Designing SubVI Front Panels
	Viewing the Hierarchy of VIs
	Polymorphic VIs

	Saving VIs
	Naming VIs
	Saving for a Previous Version

	Customizing VIs

	Chapter 8 Loops and Structures
	For Loop and While Loop Structures
	For Loops
	While Loops
	Controlling Timing
	Auto-Indexing Loops
	Auto-Indexing to Set the For Loop Count
	Auto-Indexing with While Loops

	Using Loops to Build Arrays
	Shift Registers and the Feedback Node in Loops
	Shift Registers
	Feedback Node

	Default Data in Loops

	Case, Sequence, and Event Structures
	Case Structures
	Case Selector Values and Data Types
	Input and Output Tunnels
	Using Case Structures for Error Handling

	Sequence Structures
	Event Structures

	Chapter 9 Grouping Data Using Strings, Arrays, and Clusters
	Grouping Data with Strings
	Strings on the Front Panel
	String Display Types

	Tables
	Editing, Formatting, and Parsing Strings
	Formatting and Parsing Strings

	Grouping Data with Arrays and Clusters
	Arrays
	Restrictions
	Indexes
	Examples of Arrays
	Creating Array Controls, Indicators, and Constants
	Creating Multidimensional Arrays
	Array Functions
	Default Data in Arrays

	Clusters
	Order of Cluster Elements
	Cluster Functions
	Creating Cluster Controls, Indicators, and Constants

	Chapter 10 Graphs and Charts
	Types of Graphs and Charts
	Waveform Graphs and Charts
	Waveform Graphs
	Waveform Charts
	Waveform Data Type

	XY Graphs
	Intensity Graphs and Charts
	Intensity Charts
	Intensity Graphs

	Digital Waveform Graphs
	Digital Waveform Data Type

	3D Graphs

	Customizing Graphs and Charts
	Using Multiple X- and Y-Scales
	Autoscaling
	Formatting X- and Y-Scales
	Using the Graph Palette
	Customizing Graph and Chart Appearance
	Customizing Graphs
	Using Graph Cursors
	Using Graph Annotations
	Customizing 3D Graphs

	Customizing Charts
	Configuring Chart History Length
	Configuring Chart Update Modes
	Using Overlaid and Stacked Plots

	Chapter 11 File I/O
	Basics of File I/O
	Choosing a File I/O Format
	Using VIs and Functions for Common File I/O Operations
	Using Storage VIs
	Creating Text and Spreadsheet Files
	Formatting and Writing Data to Files
	Scanning Data from Files

	Creating Binary Files
	Creating Datalog Files
	Writing Waveforms to Files
	Reading Waveforms from Files

	Chapter 12 Documenting and Printing VIs
	Documenting VIs
	Printing VIs

	Appendix A Technical Support and Professional Services
	Glossary
	Numbers/Symbols
	A
	B-C
	D
	E
	F
	G-I
	L-M
	N
	O-P
	R
	S
	T
	U-W

	Index
	Numerics
	A-B
	C
	D
	E-F
	G-H
	I
	K-M
	N-P
	Q-S
	T
	U-V
	W-Y

