
Connection with other languages

LabVIEW can call external, compiled codes with two options:

1). Using the command line with System Exec.vi

2). Call dynamic linked libraries (DLLs) with the Call Library Function node

These 2 functions can be found at Connectivity>>Library & Executables

palette.

1

The following procedure shows how to use the System Exec VI:

1. On the block diagram, place a System Exec VI
2. Right-click the command line terminal and select Create Constant. Input the argument
needed to launch the command line (e.g. for Windows, cmd). Enter the entire command as
you would type it at the DOS prompt, including all parameters.
3. Right-click the standard input terminal and select Create Constant. This terminal allows you
to redirect input to the program that you are running. For example, if you were running a
batch file with a "pause" statement, you could input an end of line through the "standard
input" to simulate pressing "Enter" on the keyboard.
4. Determine whether you would like LabVIEW to open the command prompt window.

By default, the command prompt window does not open. LabVIEW will open it in the
background, run the command, and return the result. This can be adjusted by
using /k before the code is sent to the command line (see example below).
In certain circumstances, it is necessary to include the new line character (\r\n) after the
command.

5. Determine whether you would like to halt code execution until the command prompt
returns a result. Configure wait until completion? parameter accordingly.

By default, LabVIEW will wait until the result is returned before continuing with the
program.

6. (Optional) Continue configuring the VI, using LabVIEW content Help as a guide for the other
non-required parameters.
7. (Optional) To view the command line output in LabVIEW, right-click the standard output and
select Create Indicator. 2

https://www.ni.com/docs/en-US/bundle/labview-api-ref/page/vi-lib/platform/system-llb/system-exec-vi.html

3

The following code executes the dir command on the C:\ directory and
outputs the result to a String Indicator. The command line does not open,
and the program halts code execution until the command has returned
results.

Assignment 1:

4

Alternatively, the implementation shown below will open a command prompt
window and execute the dir command on the C:\ within the command prompt.
The /k argument forces the command prompt window to stay open so that you can
see the results of the dir command. Using this method, LabVIEW and the
command prompt window will run asynchronously. In other words, after starting
the command window and passing the command to it, LabVIEW will continue
executing the next VI in your code while the command prompt window responds
to the dir command.

5

Call A DLL (C++)
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG
&l=en-US

There are multiple ways to import code from other program languages into LabVIEW. To
determine which method you should use, consider the following:Is your library a C/C++
DLL , Microsoft .NET Assembly/.NET DLL or ActiveX DLL? To determine what type of
library you have, you can check the Portable Executable (PE) header for the DLL files.

If you are using a Microsoft .NET Assembly, continue to the Import .NET Assembly
Functions with Constructor Node section below.
If you are using an ActiveX DLL go to section calling Active X.

Do you have a header (*.h) file for your C/C++ DLL?
If you do not have a header file, continue to the Manually Configure DLL Functions
Using Call Library Function Node section.

What data types does your function(s) utilize?
If the function(s) you want to call utilizes supported data types, you can proceed
with using the Import Shared Library Wizard. Continue to the Import Functions with
Import Shared Library Wizard section.
If your function(s) use complex or unsupported data types, you can use the Call
Library Function node to import and format the functions manually. Continue to
the Configure DLL Functions Using Call Library Function Node section.

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG&l=en-US
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG&l=en-US
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG&l=en-US
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG&l=en-US
https://www.ni.com/docs/en-US/bundle/labview/page/supported-data-types-for-the-import-shared-library-wizard.html

6

Import DLL Functions with Import Shared Library Wizard

If you have a header file and you are using supported data types, you can use the Import
Shared Library Wizard to import your DLL functions into LabVIEW. This tool parses the
header file, lists the functions in the shared library, converts data types in the shared library
to LabVIEW data types, and generates a wrapper VI for each function. The wizard saves the
VIs in a LabVIEW project library. Continue to the Use Header File with the Import Shared
Library Wizard section.

A full set of instructions to configure the Import Shared Library Wizard is available in the
LabVIEW Help. Briefly, you can start your import by:

1. Launch LabVIEW and navigate to Tools >> Import... >> Shared Library (.dll) to launch the
Import Shared Library Wizard.
2. Select Create VIs for a shared library and then Next
3. Input the file paths for the Shared Library (.dll) File and Header (.h) File.
4. Continue configuring each page as needed, importing your desired functions, and
selecting Next.
5. When finished with configuration, select Finish to create your LabVIEW Project library
(.lvlib) file.
For an example of how to import a DLL using the Import Shared Library Wizard,
follow Example: Importing Functions from a Shared Library File from the LabVIEW Help.

https://www.ni.com/docs/en-US/bundle/labview/page/supported-data-types-for-the-import-shared-library-wizard.html
https://www.ni.com/docs/en-US/bundle/labview/page/using-the-import-shared-library-wizard.html
https://www.ni.com/docs/en-US/bundle/labview/page/using-the-import-shared-library-wizard.html
https://www.ni.com/docs/en-US/bundle/labview-api-ref/page/resource/importtools/sharedlib/import-shared-library/ui/configure-include-paths/page-main.html
https://www.ni.com/docs/en-US/bundle/labview/page/example-importing-functions-from-a-shared-library-file.html

7

Assignment 2:

In this assignment, you will need to import the DDL generated with C++, to
LabVIEW. This is a set of functions that is used to control the Deformable Lens
that has 32 actors, a key component for an adaptive optics (AO) system.
The DLL consists of the UsbHvDriverWfc.dll and the C++ header file
actuatorsdriverplugin.h (attached0, provided by Dynamic Optics.
Shows the list of all the imported LabVIEW Functions., in the LabVIEW Block
Diagram.

Note: the 3 functions cannot be imported and MSUT be excluded:

getPluginInfo();
pd_getProperties();
pd_getInfor().

8

