Chapter 29 Relativeity

Chapter Outline

29-1 The Postulate of Special Relativity
29-2 The Relativity of Time and Time Dilation
29-3 The Relativity of Length and Length Contraction
29-4 The Relativistic Addition of Velocities
29-5 Relativistic Momentum and Mass
29-6 Relativistic Energy and E= mc²
When an object approaches the light speed, the classical momentum expression $p = mv$, is not valid.

For example, if a large mass with a speed v collides with a small mass at rest, the small mass can get a speed $2v$; This is not valid if the large mass has a speed v larger than $0.5c$, since the speed of the small mass cannot be greater than c.

It can be shown that the correct relativistic momentum for the magnitude:

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}$$

SI unit: kg.m/s
The difference of the relativistic and the classical momentum

Figure 29-13 Relativistic Momentum

![Graph showing the difference between relativistic and classical momentum as a function of speed](image)

- **Relativistic momentum**
- **Classical momentum**
Exercise 29-3

Find (a) the classical and (b) the relativistic momentum of a 2.4 kg mass moving with a speed of 0.81c.
Solution

(a) For classical momentum,

\[p = mv = (2.4\text{ kg})(0.81 \times 3.00 \times 10^8 \text{ m/s}) = 5.8 \times 10^8 \text{ kg.m/s} \]

(b) For relativistic momentum,

\[p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{(2.4\text{ kg})(0.81 \times 3.00 \times 10^8 \text{ m/s})}{\sqrt{1 - (0.81c)^2}} = 9.9 \times 10^8 \text{ kg.m/s} \]

The relativistic momentum is always larger than that of the classical!
Example 29-5 The Missing Mass

A satellite, initially at rest in space, explodes into two pieces. One piece has a mass of 150kg and moves away from the explosion with a speed of 0.76c. The other piece moves away in the opposite direction with a speed of 0.88c. Find the mass of the second piece of the satellite.
Solution). The magnitude of the momentum for the piece 1 with $m_1=150\text{kg}$:

1). The magnitude of the momentum for the piece 1 with $m_1=150\text{kg}$:

$$p_1 = \frac{m_1 v_2}{\sqrt{1 - \frac{v_1^2}{c^2}}} = \frac{(150\text{kg})(0.76\times3.00\times10^8 \text{ m/s})}{\sqrt{1 - \frac{(0.76c)^2}{c^2}}} = 5.3\times10^{10} \text{ kg.m/s}$$

2). The magnitude of the momentum of the piece 2:

$$p_2 = \frac{m_2 v_2}{\sqrt{1 - \frac{v_2^2}{c^2}}} = \frac{(m_2)(0.88\times3.00\times10^8 \text{ m/s})}{\sqrt{1 - \frac{(0.88c)^2}{c^2}}}$$
3) $p_2 = p_1$:

$$\frac{(m_2)(0.88 \times 3.00 \times 10^8 \text{ m/s})}{\sqrt{1 - \frac{(0.88c)^2}{c^2}}} = 5.3 \times 10^{10} \text{ kg.m/s}$$

So, $m_2 = 95 \text{ kg}$
The mass increasing

In Equation 29-5, we have

\[p = \frac{m_0 v}{\sqrt{1 - \frac{v^2}{c^2}}} = \left(\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \right) v = m v \]

The mass increasing with speed \(v \) as

\[m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \]

Note: 1) When \(v = 0 \), \(m = m_0 \);
2) When \(v \) approaches \(c \), \(m \) approaches infinite.
29-6 Relativistic Energy and $E = mc^2$

Since mass increases at high speed, when work is done on an object:
1) part of the work is used to increase the speed;
2) and part is used to increase its mass!

Considering an object with mass m_0 at rest. When an object moves with a speed v, its total energy is given as:

Relativistic Energy

$$E = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = mc^2$$

SI unit: J

Need infinite energy to achieve the speed of light!
Instead, the energy of an object at rest, the rest energy E_0 is:

Rest Energy with rest mass m_0

$$E = m_0c^2$$

SI unit: J

This is why material can be converted into nuclear energy!
Exercise 29-4

Find the rest energy of a 0.12-kg apple.

Solution:

\[E_0 = m_0c^2 = (0.12\text{kg})(3.00\times10^8\text{m/s}) = 1.1 \times 10^{16} \text{ J} \]

It could supply the energy needs of the entire United State for about one hour!
Example 29-6 The Energy of the Sun

Energy is radiated by the Sun at the rate of about 3.92×10^{26} W. Find the corresponding decrease in the Sun’s mass for every second that it radiates.
Solution:

1) Calculate the energy (power) radiated by the Sun in 1.00 s:

\[p = 3.92 \times 10^{26} \text{ W} = 3.93 \times 10^{26} \text{ J/s}. \]

So, \[\Delta E = p \Delta t = (3.92 \times 10^{26} \text{ J/s})(1.00 \text{ s}) = 3.92 \times 10^{26} \text{ J} \]

2) Calculate the rest mass:

\[\Delta m = \frac{\Delta E}{c^2} = \frac{3.92 \times 10^{26} \text{ J}}{(3.00 \times 10^{18} \text{ m/s})^2} = 4.36 \times 10^9 \text{ kg} \]

This is only a small amount of the total mass of the Sun! The mass loss of the Sun in 1,500 years is only \(10^{-10}\) of the Sun.
CONCEPTUAL CHECKPOINT 29–3

When you compress a spring between your fingers, does its mass (a) increase, (b) decrease, or (c) stay the same?
CONCEPTUAL CHECKPOINT 29–3

When you compress a spring between your fingers, does its mass (a) increase, (b) decrease, or (c) stay the same?

Reasoning and Discussion
When the spring is compressed by an amount x, its energy is increased by the amount $\Delta E = \frac{1}{2}kx^2$, as we saw in Chapter 8. Since the energy of the spring has increased, its mass increases as well, by the amount $\Delta m = \Delta E/c^2$.

Answer:
(a) The mass of the spring increases.
Relativistic Kinetic Energy

When work is done on a rest object, its speed increases, and thus total energy increases (Equation 29-7). The increase in the energy because of the speed, compared with the rest energy, is called (relativistic) Kinetic energy K:

$$E = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = m_0 c^2 + K$$

Relativistic Kinetic Energy

$$K = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} - m_0 c^2$$

29–9

SI unit: J
Compared with the classic kinetic energy \(\frac{1}{2} m_0 v^2 \).
Example 29-7 Relativistic Kinetic Energy

An observer watching a high-speed spaceship passing by notices that a clock on board runs slow by a factor of 1.50. If the rest mass of the clock is 0.320 kg, what is its kinetic energy.
Solution

1) Using time dilation to calculate the speed v:

$$\Delta t = \frac{\Delta t_0}{\sqrt{1 - \frac{v^2}{c^2}}} ,$$

i.e.

$$\frac{\Delta t}{\Delta t_0} = 1.5 = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

So, $v = 0.745\, c$, that is $v/c = 0.745$

2) Calculate kinetic energy K:

$$K = \frac{m_0c^2}{\sqrt{1-\frac{v^2}{c^2}}} - m_0c^2 = \frac{(0.320\, kg)(3.00\times10^8\, m/s)^2}{\sqrt{1-(0.745)^2}} - (0.320\, km)(3.00\times10^8\, m/s)^2$$
\[K = \frac{(0.320\text{kg})(3.00 \times 10^8 \text{m/s})^2}{\sqrt{1-(0.745)^2}} - (0.320\text{km})(3.00 \times 10^8 \text{m/s})^2 \]

\[= 1.44 \times 10^{16} \quad \text{J} \]

Comparison, the classical kinetic energy is $7.99 \times 10^{15} \text{ J}$, always less than that of the relativistic!
A little more on Relativity Theories:

1) Special Relativity: Discussed until now,

 There is a speed difference in the two reference frames/systems: no acceleration

2) General Relativity: No discussion,

 There is a acceleration difference in the two reference frames/systems.
Homework of Chapter 29

Due next Wednesday (Dec 13)

Problems (Beginning from page 976):
2, 16, 24, 28, 38, 42, 46, 55, 56