The Mean Value Theorem

The theorem is commonly given as

Theorem 1 Suppose that \(f \) is a continuous function on a closed interval \([a, b]\) and differentiable on the open interval \((a, b)\), then there exists at least one number \(c \in (a, b) \) with the property that

\[
\frac{f(b) - f(a)}{b - a} = f'(c).
\]

1. Consider the function \(f(x) = x + \frac{4}{x} \).
 (a) Graph \(f(x) \) in the window \([0, 10]\) by \([0, 10]\).
 (b) Graph the secant line that passes through the points \((1, 5)\) and \((8, 8.5)\) on the same screen with \(f(x) \).
 (c) Find the number \(c \) that satisfies the conclusion of the Mean Value Theorem for \(f(x) \) on the interval \([1, 8]\).
 Then graph the tangent line at the point \((c, f(c))\).
 (d) What is the relationship between the secant line and the tangent line?

2. Consider the function \(g(x) = x^3 - 2x \).
 (a) Graph \(g(x) \) in the window \([-3, 3]\) by \([-5, 5]\).
 (b) Graph the secant line that passes through the points \((-2, -4)\) and \((2, 4)\) on the same screen with \(g(x) \).
 (c) Use the graph to estimate the \(x \)-coordinates of then points there the tangent line is parallel to the secant line.
 (d) Find the numbers \(c \) that satisfy the conclusion of the Mean Value Theorem for \(g(x) \) on the interval \([-2, 2]\).
 Then graph the tangent line at the point \((c, f(c))\).
 (e) Compare your answers in parts (b) and (c).

3. Use the theorem to show that \(|\sin x - \sin y| \leq |x - y|\).

4. Use the theorem to prove that if \(|f'(x)| \leq M\) for all \(x \in (a, b) \) and if \(x_1 \) and \(x_2 \in (a, b) \), then

\[
|f(x_2) - f(x_1)| \leq M|x_2 - x_1|.
\]

5. For the functions below, tell why you cannot apply the Mean Value Theorem.
 (a) \(f(x) = |x| \) on \([-2, 2]\).
 (b) \(g(x) = \frac{1}{x-1} \) on \([0, 2]\).
 (c) \(h(x) = \csc x \) on \([-\pi, \pi]\).
 (d) \(i(x) = |x| \) on \([1, 2]\)