1. (20 points) Consider the matrix

\[A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 2 & 3 \\ 1 & 1 & 3 \end{bmatrix} \]

a. Find \(\text{rank}(A) \), and then determine a basis of \(\text{im}(A) \).

b. Use your answer in part (a) to determine the dimension of the kernel of \(A \).

2. (20 points) Consider a linear transformation \(T \) from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \). We are told that the matrix of \(T \) with respect to the basis \(\begin{bmatrix} 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 5 \\ 8 \end{bmatrix} \) is \(\begin{bmatrix} 1 & 9 \\ 9 & 7 \end{bmatrix} \).

Find the standard matrix of \(T \).

3. (20 points) Find the kernel and the image of the rotation through an angle of \(\frac{\pi}{4} \) in the counterclockwise direction (in \(\mathbb{R}^2 \)).

4. (20 points) Consider two subspaces \(V \) and \(W \) in \(\mathbb{R}^n \). Prove that their intersection \(V \cap W \) must be a subspace of \(\mathbb{R}^n \) as well.

5. (20 points) Consider the plane \(x_1 + x_2 + x_3 = 0 \) with basis \(B \) consisting of vectors \(\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \). Find \([\bar{x}]_B \) for \(\bar{x} = \begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix} \).