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Picture the Problem: You walk in both the positive and negative Your house Park
directions along a straight line.
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Strategy: The distance is the total length of travel, and the
displacement is the net change in position.

Solution: (a) Add the lengths: (0.75+0.60 mi)+(0.60 mi) =
(b) Subtract x; from x;to find the displacement. Ax=x,-x = 0.75-0.00 mi =

Insight: The distance traveled is always positive, but the displacement can be negative.

Picture the Problem: The runner moves along the oval track. - 100 m
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Strategy: The distance is the total length of travel, and the
displacement is the net change in position.

i -
Solution: 1. (a) Add the lengths: (15m)+(100 m)+(15 m) =
2. Subtract x; from x,to find the displacement. Ax=x,-x,=100-0m=
3. (b) Add the lengths: 154100+ 30+100+15 m = [260 m]
4. Subtract x, from x; to find the displacement. Ax=x,-x,=0-0m=

Insight: The distance traveled is always positive, but the displacement can be negative. The displacement is always
zero for a complete circuit, as in this case.
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Picture the Problem: You travel 8.0 km on foot and then an additional 16 km by car, with both displacements along
the same direction.

Strategy: First find the total time elapsed by dividing the distance traveled by the average and divide by the total time
elapsed to find the average speed. Set that average speed to the given value and solve for the car’s speed.

Solution: 1. Use the definition of average A= g _80+16km _
speed to determine the total time elapsed. 8, 22 km/h .

2. Find the time elapsed while in the car: At, =Ar—Af, =1.1h -084h =03h

d, 16km
3. Find the speed of the car: 5y =—== =50 km/h

A, 03h

Insight: This problem illustrates the limitations that significant figures occasionally impose. If you keep an extra figure
in the total elapsed time (1.09 h) you’ll end up with the time elapsed for the car trip as 0.25 h, not 0.3, and the speed of
the car is 64 km/h. But the rules of subtraction indicate we only know the total time to within a tenth of an hour, so we
can only know the time spent in the car to within a tenth of an hour, or to within one significant digit.

Picture the Problem: The runner accelerates uniformly along a straight track,

Strategy: The change in velocity is the average acceleration multiplied by the elapsed time.
Solution: 1. (a) Multiply the acceleration by the time: V=Y +ar=0m/s +(1 9 /s’ )(2'0 5)=[3.8 mvs]

2. (b) Multiply the acceleration by the time: v=v,tat=0m/s +(1'9 /s’ )(5'2 s) =[0.9 ms|

Insight: World class sprinters have top speeds over 10 m/s, so this athlete isn't bad, but it took him a whole 5.2 seconds
to get up to speed. He should work on his acceleration!



38. Picture the Problem: The horse travels in a straight line in the positive direction while accelerating in the negative
direction (slowing down).

Strategy: Use the definition of acceleration to determine the time elapsed for the specified change in velocity.

Solution: Solve equation 2-7 for time: e M =
a —1.81 m/s°

Insight: We bent the rules a little bit on significant figures. Because the +11 m/s is only known to the ones column, the
difference between 6.5 and 11 is 4 m/s, only one significant digit. The answer is then properly 2 s. The answer is
probably closer to 2.5 s, so that’s why we kept the extra digit.

74. Picture the Problem: The shell falls straight down under the influence of gravity.

Strategy: Because the distance of the fall is known, use the time-free equation of motion (equation 2-12) to find the
landing speed.

Solution: Solve equation 2-12 for v. Let

_ |2 _ In2 2 _
v, =0 and let downward be the positive L \/”0 +2ghx = \/0 +2(9'81 s )(14 m) =[17 m/s

direction.
Insight: That speed (about 38 mi/h) is sufficicnt to shatter the shell and provide a tasty meal!
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Picture the Problem: The swimmers fall straight down from the bridge into the water.

Strategy: The initial velocities of the swimmers are zero because they step off the bridge rather than jump up or dive
downward. Use the equation of motion for position as a function of time and acceleration, realizing that the acceleration
in cach case is 9.81 m/s’. Set x, =0 and let downward be the positive direction for simplicity. The known acceleration
can be used to find velocity as a function of time for part (b). Finally, the same equation of motion for part (a) can be
solved for time in order to answer part (¢).

2

x=x,+vi+tar’ =00 m+0+%(9.81 mfsz)(l.S)

Solution: 1. (a) Apply equation 2-11 directly:

2. (b) Apply equation 2-7 directly: v=v, +ar=0+(9.81 ms”)(1.5 5) =[15 m's
2x 2(11m x2

3. (¢) Solve equation 2-11 for #: i= 1’ = —(——,)- .
a 9.81 m/s

Insight: The time in part (c) doesn’t double because it depends upon the square root of the distance the swimmer falls.
If you want to double the fall time you must quadruple the height of the bridge.
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