
 Physics 100A – Summer 2016  
Chapter 10 

Solutions are provided only for problems from your textbook. The other problems 
already have so much guidance and notes that you should be able to understand where 
you have gone wrong. 
 
 
 Problems 
 
1.  Picture the Problem: This is a units conversion problem. 

 Strategy: Multiply the angle in degrees by radians

180

 
  

 to get radians. 

 Solution:    
 rad  rad  rad  rad

30 rad 45 rad 90 rad 180  ra
180 6 180 4 180 2 180

                                      
 

 Insight: The quantity   is the circumference of a circle divided by its diameter.  
3.1415926536 ...   

 
 
6.  Picture the Problem: The tire rotates about its axis through a certain angle. 

 Strategy: Use equation 10-2 to find the angular displacement. 

 Solution: Solve equation 10-2 for θ: 1.95 m
5.9 rad

0.33 m

s

r
     

 Insight: This angular distance corresponds to 339° or 94% of a complete revolution. 
 
 
27.  Picture the Problem: Jason is a distance R from the axis of rotation of a merry-go-

round and Betsy is a distance 2R from the axis. 

 Strategy: Use an understanding of rotational motion to answer the conceptual 
question. 

 Solution: 1. (a) Although the linear speeds of Jason and Betsy are different, their 
angular speeds are the same because they both ride on the same merry-go-round. 
Because each completes one revolution in the same amount of time, the rotational 
period of Jason is equal to the rotational period of Betsy. 

 2. (b) The best explanation is III. It takes the same amount of time for the merry-go-
round to complete a revolution for all points on the merry-go-round.  Statements I 
and II are each false. 

 Insight: Jason has a smaller linear speed tv r  and a smaller centripetal 
acceleration 2

cpa r  than does Betsy.  

 



 

34.  Picture the Problem: Jeff clings to a vine and swings along a 
vertical arc as depicted in the figure at right. 

 Strategy: Use equation 10-12 to find the angular speed from the 
knowledge of the linear speed and the radius.  Use equation 6-15 
to find the centripetal acceleration from the speed and the radius 
of motion. 

 Solution: 1. (a) Solve equation  
10-12 for  : 

t 8.50 m/s
1.18 rad/s

7.20 m

v

r
     

 

2. (b) Apply equation 6-15 directly: 
 22

t
cp

8.50 m/s
10.0 m/s

7.20 m

v
a

r
  

 

 3. (c) The centripetal force required to keep Jeff moving in a circle is provided by the
vine. 

 Insight: The vine must actually do two things, support Jeff’s weight and provide his 
centripetal force.  That is why it is possible that the vine is strong enough to support 
him when he is hanging vertically but not strong enough to support him while he is 
swinging.  There’s no easy way for him to find out without trying… but he should 
wear a helmet! 

 
 

39.  Picture the Problem: The Ferris wheel rotates at a constant rate, with the centripetal 
acceleration of the passengers always pointing toward the axis of rotation.  The 
acceleration of the passenger is thus upward when they are at the bottom of the wheel 
and downward when they are at the top of the wheel. 

 Strategy: Use equation 10-13 to find the centripetal acceleration.  The centripetal 
acceleration remains constant (as long as the angular speed remains the same) and 
points toward the axis of rotation. 

 
Solution: 1. (a) Apply equation 10-13 
directly: 

 
2

2 2
cp

2  rad
9.5 m 0.29 m/s

36 s
a r

     
   

 2. When the passenger is at the top of the Ferris wheel, the centripetal acceleration 
points downward toward the axis of rotation. 

 3. (b) The centripetal acceleration remains 0.29 m/s2 for a passenger at the bottom of 
the wheel because the radius and angular speed remain the same, but here the 
acceleration points upward toward the axis of rotation. 

 Insight: In order to double the centripetal acceleration you need to increase the 
angular speed by a factor of 2  or decrease the period by a factor of 2 .  In this case 
a period of 25 seconds will double the centripetal acceleration. 

 
 



48.  Picture the Problem: The drive wheel of the tricycle rolls without slipping at 
constant speed. 

 Strategy: Because the wheel rolls without slipping, equation 10-15 describes the 
direct relationship between the center of mass speed and the angular velocity of the 
driving wheel.  

 Solution: Apply equation 10-15 directly:   t 0.260 m 0.373 rev/s 2  rad rev 0.60v r    

 

 Insight: This speed corresponds to about 1.4 mi/h, half the normal walking speed of 
an adult.  The larger wheels on adult bicycles allow for higher linear speeds for the 
same angular speed of the driving wheel. 

 
 
61.  Picture the Problem: The ball rotates about its center with a constant angular 

velocity. 

 Strategy: Use equation 7-6 to find the translational kinetic energy and equation 10-
17 to find the rotational kinetic energy of the curveball. 

 Solution: 1. Apply equation 7-6 
directly: 

  221 1
t 2 2 0.15 kg 48 m/s 170 JK Mv    

 2. Use 22
5I MR  for a uniform 

sphere 
in equation 10-17: 

 
    

2 2 2 2 21 1 2 1
r 2 2 5 5

2 21
5 0.15 kg 0.037 m 42 rad/s 0.072 J

K I MR MR    

 
 

 Insight: Only a tiny fraction of the total kinetic energy is used to spin the ball, but it 
has a marked effect on the trajectory of the pitch! 

 
 
75. Picture the Problem: The cylinder rolls 

down the ramp without slipping, gaining 
both translational and rotational kinetic 
energy. 

 Strategy: Use conservation of energy to 
find total kinetic energy at the bottom of the 
ramp.  Then set that energy equal to the sum 
of the rotational and translational energies.  
Because the cylinder rolls without slipping, 
the equation v r   can be used to write the 
expression in terms of linear velocity alone.  
Use the resulting equation to find 
expressions for the fraction of the total 
energy that is rotational and translational 
kinetic energy. 



 Solution: 1. (a) Set i fE E  and solve 
for fK : 

   

i i f f

f
2

f

0 0

2.0 kg 9.81 m/s 0.75 m

14.7 J 15 J

U K U K
mgh K

K mgh

  
  

 

 

 2. (b) Set fK  equal to t rK K :   22 2 2 21 1 1 1 1
f 2 2 2 2 2

2 2 231 1
2 4 4

K mv I mv mr v r

mv mv mv

   

    

 3. Determine rK  from steps 1 and 2:    2 231 1 1 1
r f4 3 4 3 3 14.7 J 4.9 JK mv mv K      

 4. (c) Determine tK  from steps 1 and 2:    2 231 2 2 2
t f2 3 4 3 3 14.7 J 9.8 JK mv mv K      

 Insight: The fraction of the total kinetic energy that is rotational energy depends 
upon the moment of inertia.  If the object were a hoop, for instance, with 2I mr , the 
final kinetic energy would be half translational, half rotational. 

 
 


