Motion in 1-dimension:

Displacement $\Delta x = x_f - x_i$ Instantaneous velocity $v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$ Average velocity $v_{av} = \frac{\Delta x}{\Delta t}$ Average acceleration $a_{av} = \frac{\Delta v}{\Delta t}$ Instantaneous acceleration $a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$ Motion with constant acceleration: $\begin{aligned} -at & v_{av} = \frac{1}{2}(v_0 + v) & x = x_0 + \frac{1}{2}(v_0 + v)t \\ x = x_0 + v_0 t + \frac{1}{2}at^2 & v^2 = v_0^2 + 2a(x - x_0) \end{aligned}$ $v = v_0 + at$ Freely falling objects: Fall with constant acceleration $g = 9.81 \text{ m/s}^2$ in the downward direction **Components of a Vector:** *x*-component of vector \vec{A} $A_x = A\cos\theta$ θ measured relative to the *x*-axis y-component of vector \vec{A} $A_y = A \sin \theta$ θ measured relative to the x-axis Note: the components are positive if they point in the positive direction of the coordinate system. Magnitude of a vector \vec{A} $A = \sqrt{A_x^2 + A_y^2}$ Direction of a vector \vec{A} $\theta = \tan^{-1}(A_y / A_x)$ θ measured relative to the x-axis vector of length one in the positive x direction Unit vectors \hat{x} $\hat{\mathbf{y}}$ vector of length one in the positive y direction $\vec{A} + \vec{B} = (A_v + B_v)\hat{x} + (A_v + B_v)\hat{y}$ Vector addition Motion in 2-dimensions: Displacement $\Delta \vec{r} = \vec{r}_{f} - \vec{r}_{i}$ Average velocity $\vec{v}_{av} = \frac{\Delta \vec{r}}{\Delta t}$ Instantaneous velocity $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}$ Average acceleration $\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$ Instantaneous acceleration $\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t}$

Motion with constant acceleration:

The motion can be analyzed in terms of the x and y components and the same equations as in the one-dimensional case apply. We specialize to projectile motion where the acceleration is that of gravity alone. That is, with the usual directions of positive *x* and *y*, the acceleration of the object has components:

$$a_x = 0$$
 $a_y = -g = -9.81 \text{ m/s}^2$

The equations of motion are then:

$$x = x_0 + v_{0x}t \qquad v_x = v_{0x}$$

$$y = y_0 + v_{0y}t - \frac{1}{2}gt^2 \qquad v_y = v_{0y} - gt \qquad v_y^2 = v_{0y}^2 - 2g(y - y_0)$$

v = v

For zero launch angle projectile, landing site is $x = v_0 \sqrt{\frac{2h}{g}}$

For general projectile: Range
$$R = \left(\frac{v_0^2}{g}\right) \sin 2\theta$$
; Maximum height $y_{\text{max}} = \frac{v_0^2 \sin^2 \theta}{2g}$

Chapter 5: Newton's Laws of Motion

Newton's Second Law: In component form:	$\sum \vec{F} = m\vec{a}$ $\sum F_x = ma_x$	$\sum F_y$	$= ma_y$ $\sum F_z = ma_z$
Chapter 6: Applications of Net Kinetic Friction:	$\frac{\text{wton's Laws}}{f_k = \mu_k N}$	<i>N</i> is the	e normal force
Static Friction:	$f_s \leq \mu_s N$		
Springs – Hooke's Law:	$\vec{F} = -k\vec{x}$	Force b	by spring is opposite to displacement
Circular Motion – Centripetal A	cceleration: a_{cp}	$=\frac{v^2}{r}$	Direction is towards the center of the circle
Chapter 7: Work and Kinetic	Energy		
Work done by Constant Force:	$W = Fd \cos \theta$	$rightarrow \theta$	
Kinetic Energy defined:	$K = \frac{1}{2}mv^2$		
Work-Energy Theorem:	$W_{\rm total} = \Delta K$	$K = K_f - K_i$	
Work done against Spring Force	$: W = \frac{1}{2}kx^2$		
Power – rate of doing work:	$P = \frac{W}{t} \equiv I$	$F_{\mathcal{V}}$	
Chapter 8: Potential Energy a	nd Conservative Fo	<u>orces</u>	
Potential Energy U:	$W_c = -\Delta L$	$V = U_i - U_f$	$W_{\rm c}$ is the work done by a conservative
force			
Gravitational Potential Energy:	$U_{\rm g} = mgy$		
Spring Potential Energy:	$U_{\rm s} = \frac{1}{2}kx^2$		
Mechanical Energy:	E = U + K	-	
Total work:	$W_{\rm total} = W_{\rm c}$	$+W_{\rm nc}$	$W_{\rm nc}$ is the work done by all nonconservative forces $W_{\rm c}$ is the work done by all conservative forces
Work-Energy Theorem:	$W_{\rm nc} = \Delta E$	$= E_f - E_i$	-
Conservation of Mechanical End	ergy: $K_i + U_i = 1$	$K_f + U_f$	when $W_{\rm nc} = 0$

Chapter 9: Linear Momentum and Collisions

Chapter 9: Linear Momentum and Comsion	<u>18</u>
Linear Momentum for a single object defined:	$\vec{p} = m\vec{v}$
For a system of objects, total momentum is:	$\vec{\boldsymbol{p}}_{\text{total}} = \vec{\boldsymbol{p}}_1 + \vec{\boldsymbol{p}}_2 + \vec{\boldsymbol{p}}_3 + \dots$
Newton's second law:	$\sum \vec{F} = rac{\Delta \vec{p}}{\Delta t}$
Impulse of a force:	$\vec{I} = \vec{F}_{av} \Delta t = \Delta \vec{p}$
Chapter 10: Rotational Kinematics and Ene	<u>rgy</u>
Average angular velocity: $\omega_{av} = \frac{\Delta \theta}{\Delta t}$	Instantaneous angular velocity: $\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t}$
Period for uniform rotation: $T = \frac{2\pi}{\omega}$	
Average angular acceleration: $\alpha_{av} = \frac{\Delta \omega}{\Delta t}$	Instantaneous angular acceleration: $\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t}$
Rotational kinematic equations: $\omega = \omega$	$\theta = \theta_0 + \frac{1}{2} \left(\omega + \omega_0 \right) t$
$\theta = \theta$	$\omega_0 + \omega_0 t + \frac{1}{2} \alpha t \qquad \qquad \omega_0 = \omega_0 + 2\alpha \left(\theta - \theta_0\right)$
Tangential Speed: $v_t = r\omega$ Centripetal acc	celeration: $a_{cp} = v^2 / r = r\omega^2$ Tangential acceleration: $a_t = r\alpha$
Rotational kinetic energy: $K = \frac{1}{2}I\omega^2$	Moment of inertia $I = \sum m_i r_i^2$
Kinetic energy of rolling motion: $K = \frac{1}{2}$	$\frac{1}{2}mv^{2} + \frac{1}{2}I\omega^{2} = \frac{1}{2}mv^{2}\left[1 + \frac{I}{mr^{2}}\right]$

Chapter 11: Rotational Dynamics and Static Equilibrium

Definition of torque:	$\tau = rF\sin\theta$	θ is the angle between θ	\vec{r} and \vec{F}
Newton's Second Law:	$\tau = I\alpha$		
Conditions for Static Equilibrium:	$\sum F_x = 0$	$\sum F_x = 0$	$\sum \tau = 0$

Chapter 12: Gravity

Newton's Law of Gravitation:

 $F = G \frac{m_1 m_2}{r^2}$

$$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2$$

Chapter 13: Oscillations about Equilibrium

Definition of a Period:	T = time to contract to cont	mplete one cycle of a periodic motion
Frequency of Periodic Motion:	$f = \frac{1}{T}$	units in cycle/second \equiv Hz

Simple Harmonic Motion:

$$x = A\cos\left(\frac{2\pi}{T}t\right) \qquad \qquad \omega = \frac{2\pi}{T}$$
$$v = -A\omega\cos(\omega t) \qquad \qquad a = -A\omega^2\cos(\omega t)$$
$$T = 2\pi\sqrt{\frac{m}{k}}$$

Period of Mass on a Spring:

Energy Conservation in Mass on a Spring System:

$$E = K + U = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2}$$

$$E = U_{\text{max}} = \frac{1}{2}kA^{2}$$

$$E = K_{\text{max}} = \frac{1}{2}mv_{\text{max}}^{2}$$
Period of Simple Pendulum:
$$T = 2\pi\sqrt{\frac{L}{g}}$$

Chapter 14: Waves and Sound

Wavelength of a Wave:	λ = distance over	er which a wave repeats	
Period of a Wave:	T = time require	ed for one wavelength to pass a given po	oint
Frequency of a Wave:	f = 1/T		
Speed of a Wave:	$v = \lambda f$	Speed of a Wave on a String:	$v = \sqrt{\frac{F_T}{F_T}} = \sqrt{\frac{F_T L}{F_T L}}$

Speed of a Wave:	$v = \lambda f$	Speed of a Wave on a	a String:	$v = \sqrt{\frac{T_T}{m/L}} = \sqrt{\frac{T_T L}{m}}$
Sound Intensity:	$I = \frac{E}{At} = \frac{P}{A}$	Point Source:		$I = \frac{P}{4\pi r^2}$
Intensity Level (in dB):	$\beta = 10\log(I/I_0)$	$I_0 = 10^{-12} \text{ W/m}^2$		
Sources in phase:	path difference = $\begin{cases} 0, \\ \lambda \end{pmatrix}$	λ, 2λ, 3λ, 2, 3λ/2, 5λ/2,	(constructive interference destructive interference
Standing Waves:	Separation between tw	vo adjacent nodes = $\lambda/2$	2	
Standing Waves on String:	$f_n = n \frac{v}{2L}$	$n = 1, 2, 3, \dots$		
Standing Waves in Pipe closed	at one end:	$f_n = n \frac{v}{4L}$	n = 1, 1	3, 5,

 $f_n = n \frac{v}{2L}$ n = 1, 2, 3, ...

Standing Waves in Pipe open at both ends:

Chapter 15: Fluids

Definition of density:	$\rho = \frac{M}{V}$	Definition of pressure:	$P = \frac{F}{A}$
Variation of pressure with depth	::	$P_2 = P_1 + \rho g h$	
Archimedes' Principle:	Buoyant force $F_b = \rho_f g$	gV where V is the volum	e immersed in the fluid
Submerged Volume:	$V_{\rm sub} = V_{\rm s}(\rho_{\rm s} / \rho_{\rm f})$		