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ARTICLE INFO ABSTRACT

In this paper, based on Von Kdrman’s nonlinear theory and the classical lamination theory, a closed form ex-
pression is derived for the tangent stiffness matrix of a laminated composite beam element undergoing large
deformation and rotation under mechanical and hygrothermal loads. Stretching, bending and torsion have been
considered. A co-rotational element reference frame is used as the Updated Lagrangian (UL) formulation. The
model has been verified in different problems by comparison with the results of Nastran and ANSYS composite
laminate tools, and the difference in the resulting large deformations is less than 5%. The major advantage of the
proposed approach is that the composite structure is modeled using 1D beam elements rather than 2D shell or 3D
solid elements as in the case of Nastran and ANSYS where laminates are defined over surfaces or 3D solids. The
availability of an explicit expression for the tangent stiffness matrix makes the proposed model highly efficient
specially when dealing with large composite space frame structures. The saving in computational time could
reach 93% compared to regular FE software packages. The developed model is very useful for modeling and
designing flexible composites used in new applications such as morphing aerospace structures and flexible ro-
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1. Introduction

With the appearance of new technologies and inventions in the
fields of automotive design, aerospace structures, smart structures, and
robotics, the design and manufacturing of laminated composite mate-
rials have seen a lot of development. Beside the well-known applica-
tions of fiber-reinforced laminated composite materials because of their
various advantages, such as high specific stiffness and strength, high
corrosion resistance, good thermal insulation, fatigue resistance and
damping properties, new applications of composite materials emerged
that necessitate the development of new effective and efficient tools and
approaches in design and simulation. For example, a lot of smart ma-
terial elements, such as shape memory alloy (SMA) wires or ribbons and
piezoelectric patches or fibers, are embedded in polymer composite
laminates to form smart composite structures with multi-functions such
as sensing, actuating and load bearing [1-3]. Another example is the
design of morphing aerospace structures, such as morphing wings with
flexible seamless control surfaces or flexible winglets [4]. The design of
such structures is challenging because of the need to have flexible, yet
strong, wing skins that can morph to different shapes and still be able to
stand aerodynamic loads. Composite actuators combining shape
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memory wires, glass fibers in a soft matrix that could morph into
complex shapes utilizing coupling effects for in-plane, out-of-plane, and
twisting deformations have been proposed [5-7] and applied to inter-
esting applications such as turtle-like swimming robot [8] and
morphing car spoiler [9]. Another example is robotic arms and ma-
nipulators made of flexible laminated composite end-effectors [10,11].
Flexible composites are manufactured as reinforcing fibers in flexible
matrix. Such flexible composites undergo large deformations, hence for
modeling these structures, geometric nonlinearity should be con-
sidered. In addition, composite beams and plates with high slenderness
ratios, normally undergo large displacements and rotations even
without reaching large strains and/or overcoming the material’s elastic
limit [12]. Hence, it is critical to develop computational tools to effi-
ciently and accurately predict the deformation of such composite
structures subjected to any mechanical or hygrothermal loads. This will
also be very useful in the design process where large number of itera-
tions are to be done sweeping the parameters in the design space to
achieve the desired goals.

Introducing geometric nonlinearity to structures is an option in al-
most all available commercial finite element software nowadays, such
as ANSYS, ABAQUS, and MSC Nastran. Defining a composite layup
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Fig. 1. (left) Kinematic diagram of the laminated composite 3D beam element, (right) Laminated composite beam subjected to torsion, bending moments and axial force.

given the material properties of all plies, their fiber orientations and
thicknesses can also be done in all the aforementioned software in
addition to SOLIDWORKS Simulation, Autodesk Simulation
Mechanical, and Nastran-in-CAD tool integrated in any CAD software
such as SOLIDWORKS or Autodesk Inventor. Composite laminates are
defined in these software on a surface or 3D solid to be meshed using 2D
plate or shell elements or 3D solid elements, respectively. Composite
laminates cannot be defined on lines to model beams or 3D frames.
Hence, the computational cost of performing geometrically nonlinear
static or dynamic analyses on large composite structures, such as
trusses, frames or idealized structures, becomes very high. The devel-
opment of a 3D frame element for the geometric nonlinear analysis of
laminated composite beams will then be very effective and efficient due
to the expected simplicity and low computational costs.

Several three-dimensional frame finite element formulations for the
geometric nonlinear analysis of thin-walled laminated composite beams
have been developed during the last two decades. Bhaskar and Librescu
[13,14] developed nonlinear theory of thin-walled composite beams
with closed and open sections taking into account the transverse shear
deformation effect while the warping torsion component was neglected.
Omidvar and Ghorbanpoor [15] and Cardoso et al. [16] proposed a
three-dimensional nonlinear finite element models for thin-walled
open-section composite beams with symmetric stacking sequence, in-
cluding the warping effect, and based on the Updated Lagrangian (UL)
formulation. Based on Von Karman strain tensor, Vo and Lee [17,18]
developed three-dimensional thin-walled laminated beam elements
with open sections, and investigated the effects of fiber orientation,
geometric nonlinearity, and shear deformation on the axial—
flexural-torsional response. Mororé et al. [12] developed three-di-
mensional thin-walled laminated beam elements with closed sections
using Total Lagrangian (TL) formulation allowing large displacements
and moderate rotations, but without the effects of warping and trans-
verse shear. Saravia [18] developed consistent large deformation-small
strain formulation for thin-walled composite beams (TWCB) calling it a
“geometrically exact TWCB formulation” suitable for modeling high
aspect ratio composite beams that undergo large rigid body motions,
such as wind turbine wings, satellite arms and automotive body stif-
feners. Turkalj [20] presented a beam formulation for large displace-
ment analysis of composite frames considering the flexibility of the
connections.

Atluri and his co-workers extensively studied large rotations in
beams, plates and shells, and attendant variational principles (see
[21-24]). Explicit derivations of the tangent stiffness matrix of 3D
frames including elasto-plasticity were derived [25-27] without em-
ploying either numerical or symbolic integrations. Based on a Von
Kérmén type nonlinear theory in rotated reference frames, Cai et al.
[28] developed a simple geometrically nonlinear large-rotation beam
element with arbitrary cross-section using a co-rotational reference
frame for each finitely rotated beam element as the UL reference frame
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for the respective element, and accounting for stretching, bending and
torsion. An explicit expression of a symmetric tangent stiffness matrix
of the beam element in the co-rotational frame was derived and vali-
dated in multiple numerical examples of space frames undergoing large
deformations.

Even in the simplest formulation of the aforementioned works that
presented geometrically nonlinear composite beams [12-20], an ex-
plicit expression for the tangent stiffness matrix could not be reached.
Hence in this work, a finite element formulation of laminated compo-
site beams undergoing large deformation and rotation, in response to
mechanical or hygrothermal loads, is developed based on Von Kédrmén
nonlinear theory and the classical lamination theory. Stretching,
bending, and torsion has been accounted for, and a closed form ex-
pression of the element tangent stiffness matrix has been derived, uti-
lizing the element’s co-rotational reference frame as the UL formula-
tion. The model has been verified in different problems by comparison
with Nastran and ANSYS results. In all problems, the difference in the
resulting deformations is less than 5%. The relative simplicity of the
derived explicit tangent stiffness matrix is one of the major advantages
of the proposed approach, which makes large deformation analyses of
laminated composite beams highly efficient specially when dealing
with large composite space frame structures.

2. Transformation between the global and the deformation-
dependent co-rotational local frames of reference

Consider a beam element made up of fiber-reinforced composite
laminate in the initial configuration and then deforms to the deformed
configuration when loads are applied on it, as shown in Fig. 1 (left). The
global coordinate system is denoted %—z—%, with ezl—ezz—ei as the unit
vectors in the directions of the three global axes. X,—%—%; and x—%—X;
are the coordinate syst of the initial and deformed configurations re-
spectively, with corresponding unit vectors €,—&,—¢; and e;—e,—es, re-
spectively as shown in Fig. 1 (left).

The unit vectors of the initial configuration are defined as follows: &;
is simply defined using the nodal coordinates of the element’s two end
nodes,

~

e = (A% + AR + AR &)/L, )

where A% =¥OR(; Ay =¥ORY; A% = RO
L= \/(AJ?l)z + (A%)* + (A%)?, and the superscript (j) in ¥ indicates
the node number.

6, is perpendicular to %/3 and €;, while &; is perpendicular to €; and &,:

&= (& xe/lesx el =(-A%e + ANe)/Z; & =78 X &,

(2

where Z =

~N A~~~

(A%)? + (%)
Therefore, the relation between €;,2,,¢; and €1,€,,8; could be written
in matrix form as:
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a) [ zaw zaw zax e
&= 7L - LA%  LAX 0 1%
& - ARA% - ABAY 22 || 3

The unit vectors in the directions of the deformed configuration
coordinates are defined as follows: e; depends on the nodal coordinates
of the deformed beam element,

1= (A& + A8, + A &)/l @

where Ax = Xl(z)_xfl); A = xz(z)_xz(l)i Az = x3(2)—x3(1); l=
J(A)? + (A%)? + (Ax3)2. e, is perpendicular to & and e;, while e; is
perpendicular to e; and e,:

e=@Xe)lesXel; e3=e Xen (5)
Now, e; and ¢; can be written as:
e = @8 + e + a3l G =0 + 8 + 38, (6)
Ax Ax. Ax — AR AR NN z
where q; = 2450, = 22503 = =2, and ¢; = ZlL 3. ¢, = 721 3;03:?
Using Eq. (5), e, could be expressed as:
e = [(caaz—czm)ey + (cza—c1a3)@; + (cra—cyap)es]/1*
~ ~ ~
= b1€1 + bzez + b3€3, (7)
where [ = \/(cza3—c3a2)2 + (a—c1a3)? + (ciay—c,a1)>  and by =
cpaz3—c3ay., b _ c3a1—ciaz, b _ Ga—ca
* » V2 — * » U3 — * .
Finally e; takes the form:
e3 = (apbs—azby)e; + (ash1—a;b3)e; + (a1b,—axb1) ¢ ®

Ny
Therefore, the relationship between ey,e;,e; and €),é,,€; is written in
matrix form as

€
et =21
€3

Ao is the transformation matrix between e;,e,,e; and €;,e,,¢s.

R

O (7} az
b1 bz b3

; WhereAqg = .
(azbs—azby) (asbi—arbs) (ab,—ayby)

>R

SR

9

3. Von Karméan nonlinear theory for a beam with large
deformation

As shown in Fig. 1 (right), the laminated composite beam is sub-
jected to torsion T about x; direction, and bending moments M», and
M33 about x; and x, directions, respectively. The cross-sectional area is
assumed to be constant throughout the deformation of the composite
beam. The displacements of the beam’s centerline are denoted
U0 (q), U0 (%), Uz0(x1). The bending deformations resulting from Ms3
and M, are x3(0uzo/0x) and x; (Ouyy/0x;) respectively. The total torsion
of the beam about x; due to the torque T is denoted 7 (x).

With the above definitions and Fig. 1 (right), it is possible to write
three equations for the total displacements of the composite beam in x;,

X and x; directions:
duyo dusp

= w2 ———G——; U= Upl)-370q); u3
o ox

uzo () + %7 (q). (10)

3.1. Strain-displacement relations

Green-Lagrange strain-displacement relations describing the large
deformations of the thin composite beam based on Von Karméan’s
nonlinear theory take the following forms: Axial strain in the x; di-
rection:
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', (dm) (9w
ox 0x o
2
L1 (omo_, NE SN
2|\ oy o o

1
= o1 + X% [Xoz + (U10,)Xe2] + X3[Xs3 + (th10)Xs3] + Exzz(ng)

_ 6u1 1

Ju 32 92
o, — o _ U0 U0
oy 2

= %) -3
ax ox} Ox

62u30
2
Oxy{

azuzo
2
Oxy{

—X3

1 5.0 1 1 2 2 2
+ —x3(X33) + —0X:3X0X33 + — [ (1 + (u + (u s
5 3 (X55) 52t 45 2[( 10,1) (u20,1) (u30,)] a1

3%ujp

- are used. The
1

where the notations u;; = %‘JO and X;; = —uj1; =

terms that contain (u101)?, (U101)Xa2, (tho,1)Xs3, X3, X33 and XXy are
assumed to be very small compared to Xy,, X33 and u¢ ;. Therefore, these
terms are neglected in the further development of the strain-displace-
ment relations. &, is then expressed as,

&1 = Elol + X2X22 + X3X33, (12)
where
1
0 _ 2 2] — (0L ON
&1 = U1 + U, + (u =¢é7 t+¢&
11 10,1 2 [( 20,1) ( 30,1) ] 11 11 (13)

Similarly, the other normal and shear strain components are ex-

pressed as:
ou, 1| (owy z ou, 2 ouz >
=—=+=|[=| +|=2| +|=
&2 6x2 2 [ 29 ) aX2 axz
2
=0+~ (—ﬂ) +0+72| = L[ + 72
2 ox 2 (14)
o, 1| (omY (owY (owY
==+-||=| +|=] +|[=
& 5x3 2 [(5x3) 6x3 6x3
2
1 1
=0+ (_%) +0+ 2| = = [(u00)* + 7%,
2 0 2 (15)
1 auz 6u3 1
pn=—|—+—|==-(1t+1)=0,
272 ( ox; 0% ) 2 ¢ ) (16)
1 5u1 5u3 1 6u30 6u30 or 1
sm=——+ ===+ ="+ —x|=-(x
. 2(6x3 axl) 2( ox ox ox 2) 2(77 2) 17)
1(0w; Odu 1( Ouy = Ouy O 1
==+ ==+ x| ==
2 2(6):2 6x1) 2( o | ox  ox ) 2 ) (18)
where 7 = ST The strain tensor written in matrix form can now be

ox1”
written as linear and nonlinear components:

e=¢l + €N, (19)
5111 Eﬁl
eh U0,1 X2 X33 e
i 0 0 0 N
33 0 0 0 N 33
gk = = + x + x , eN=
vk 0 2 o 1 o s
L 0 n 0 N
" 0 0 -7 L
"2 "2
(u20,)* + (u30,1)*
(ux0,)* + 72
=] (ugp1)? + 72
0
0
0 (20)

where y; = 2¢; (i # J) are the engineering shear strains. As shown in Eq.
(20), &, and &; do not have any linear terms and their nonlinear terms
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are relatively small. Therefore, these normal strains that are perpen-
dicular to the beam's longitudinal direction could be neglected, and the
linear and nonlinear strains can be reduced to:

ek ey
1 Ujo,1 X X33 1
e=|r|=|o0 |+x|n|[+x] 0| N=|n
L 0 0 -7 N
"2 "2

1 (u20,)* + (u30,1)*

== 0
2
0 @1

3.2. Stress-strain relations

Considering each composite lamina to have linear elastic material
behavior, the additional second Piola-Kirchhoff stress tensor written in
matrix form could be written as [29]:

ol = Qg, (22)
where ol= [0}, 0}, 0} 03 oy onLll, e=[m &2 &3 Y3 Y Kol
and
Q=9"1!=(TT¥T)! = T @-IT-T, (23)
[ 1 “Vxy' vy 0 0 0 ]
Ey Ey Ey
Ty LY 9 0 0
Ey Ey Ey
vz’ VY 1 0 0 0
v — Ey Ey Ey T
0 0 o L 0o o
Gy
0 0 o o L o
Gz
0 0 o o o !
L GX/y |
[ 2 s2 00 0 sin20
2 ¢200 0 -—sin20
o o100 0
0 0 0c —s 0
0 0 0s ¢ 0
|—sc sc 0 0 0 (¢*—s?

Ey,Ey.E; are the three Young’s moduli, v,V .,V are the three
Poisson’s ratios, and G,y,G,Gy are the three shear moduli in the
local axes of the orthotropic lamina shown in Fig. 2 (right). ¢ = cos6
and s = sin6.

As was mentioned earlier, &, &3 and y,, strains are neglected, hence
we do not consider the associated stresses. The stress-strain relations in
a single lamina can then be written as
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Fig. 2 (left) shows the cross section of the composite beam made up
of n laminae, where each lamina could be made of different material
and have different fiber orientation angle 6. The total thickness of the
laminate is h = Y, t; and the location of the top and bottom surfaces
of ply k are expressed as:

Il
=

i=k—1

hkl—__+ z i (top); hi=—

i

+ Y5

[

(bottom)
(25)

Il
=

where k = 2,3,....n—2,n—1.
The nodal axial force in the beam’s longitudinal direction (x-di-
rection) could be expressed as

Niu=Ni+Nj = ‘/; (aif + aif)dA (26)

Using Egs. (24) and (21), we can write the linear component of Nj;
as

N11 = f UuLdA f [Qnuml + %QuXo + % Q157 + x30Q11Xa3

n

)

—x3§1677]dx2dx3 =
k=1

e — b
[bulo,l _/;k: Qudx; + X33 j;ki Quxsdxz
e _ o
—bn ‘/hlk: mesdxs] = buyg, kgl Qll(hk_hk—l)
b, < b <
+ 5X33 Z Qu [h;?—hkz_l]—zn z Q16 [hkz—hkz—l)-

k=1 k=1 27)

where the term A(GUXZZ + Qisn)xdx,dx; vanishes because the in-
tegration in x direction is always from —b/2 to b/2. Similarly, the
nonlinear component of Nj; becomes

Ny = f ol dA = f =Q11((u20,0)? + (uz01)) 3

~ Z _((u201)2 (uSOI)z)f Qndxa

g((uzm) + (U301)?) Z Qi1 (he—hye—y).

k=1 (28)
The axial force, Nj; can then be written as:
N1 = N5 + NN ~ bAgl! + bCXy3—bDy, (29)
where
n 1 n
A= Z Qu—hi-1); C = 5 z Qu(hg—hi_); D
k=1 k=1
-1 Z Quo(h—hi_y),
24 (30)

The nodal bending moments about X, and x3 (M;3 and M,,), and the
nodal torque about x; (T) can be developed similarly to get:

Fig. 2. Schematic of the laminated fiber-reinforced com-

oy 0111L UlllN Qu Qs Qe ElLl Ell\ll
Ghp= o o = ?51 Qss 956 7311 + 7311]
0112 UllzL allév Qs1 Q56 Qs 71L2 yg (2 4)
h“ 7 ]
2
0 h
3
1
h, 7] h/2
h, h
4
y Mid
hlh l APlane
k| k-1 k-1
[ k
h }f,-/ K+ h/2
n
v
n L

posite beam cross section (left), and fiber orientation in a
single lamina (right).
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My = M + MY = /; (allf + o'llf’)x3dA ~ bCel' + bF X33—bGy,
(3D

Mo =M+ M = [l + ol uda = L+ b,
A 12 12 (32)

A b3 ~ PN b3 A ~
T= f 0h%—05%; |dA = —bDel} + EB Xo—bG X33 + (EH + bM)n,

33)
where
n n
= Qus(hg—hi—y); F = % z Qu(hi-hiy); G
k=1 k=1
n
% Z Qis(h—hi_)
n B n
N _ ~ _
H= Z Qss(hk—he—1); M =3 Z Qoo (hi=hii_y).
-1 k=1 (34)
The generalized nodal forces can then be written in matrix form as
S = DE, (35)
Sl N11 El 6101
S = SZ — Mzz E= EZ — X22 D
S3 M;; ’ E; X33 ’
S4 T E4 n
A o € -D
B2 A 2 a
Y B ¥
¢ o F -G
~b B -G Zh+d
12 (36)
Now define the generalized displacement vector as
El Uo
u={%l_ Jto
il Uzo
~ T
iy 37

The generalized strain vector can be expressed as linear and non-
linear components

1
E=El 4+ EN = LU + —(AHU),
5 (AHU) 38)
where
[ 0 o o
x1
2 0000
= 0 o0
52
Lo 7 i . H=|0100[0. 4
o o -2 o 001 0|ayg
a2 0000
0 0 0o 2
A x1
[0 o s
ax1  dx1
=]o 0 o0 o
00 00
0 0 0 O (39)

The element generalized mechanical stress vector can be written as

sMech = DEF + DEN = St + SV (40)
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3.3. Hygrothermal effects

The global coefficients of thermal expansion in a single lamina are
related to the local ones through the transformation matrix as follows:

oG = TflaL, 41)

d T
where «g = |ann @ a3 % % %] ;oL :[ax/x' Ayy Ozz 00 0] .
The thermal stresses in a single lamina due to a temperature change

(AT) can then be written as

UlTlh

2| [

0'3T3h — o3

o =Q Zzs AT

o @

O'szh (42)
By neglecting o7y, oj' and o7 as was done before, we get

GlTlh 611 615 616 o

ot ={0a Qs Qs {0‘31}AT-

o Qo1 Qss Qus |\ 112 (43)

The nodal axial thermal force in x; direction can be expressed as

NlTlh = f UllhdA ATf [Quar + Qusas + Queap]dA

= bAT j; -

where

[Quanr + Qisaz + Quectizldxs = bATN, (44)

N= z [Quons + Qrsas + Quecnz] (hi—hy—1)

k=1 (45)

The nodal bending moments about x, and x3 (M-: and M3 ") and the
total torque about x; (T™") due to temperature change are derlved si-
milarly to get

he — —
M = = bAT dx
33 f Un xdA _/h‘k_] [Quony + Qusoz + Qreaz]x3dxz
= bATO, (46)
M= f of'x%dA = ATf [Qua + Qusas; + Queaa]edA = 0, 47)

T = f (Ulghxz -0 1x;) = —bATf [Qsian1 + Qgsatz1 + Qo 2] X3dx3

= —bATP, (48)
where
A 1 o _ _ ~
0= 3 Z [Quan + Qisaz + Queaz] (hi—hi_y); P
k=1
1% [~ ~ ~
= Z [Qsr0u1 + Qssats + Qescrial (RE—hL_y).
20 (49)

The generalized nodal forces due to temperature change can then be
written in matrix form as

NI ISt
IS L1 I 1) O )
S M 0

S/ ™ -7 (50)
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Following the same process, the generalized nodal forces due to
moisture absorption can be derived as

SlMoist Nll\l/lom R\
) § Moist M Moist 0
Moist — 2 — 22 —
SHeBt = Moist Moist [ baC W ’
S M3 ~
SA{WOI'SI TMoist - X 1)
where
n
R = z [611511 + 615531 + 616;312](hk—hk—1); w
k=1
n
= % z [QuBy + QusBa + Qi ] (hi—hi_y)
k=1
n
s 1 _ _ _
X = 5 z [Qe18,; + QosBs, + Q66,6’12](hk2—hk2,1)
k=1 (52)

B; are the moisture expansion coefficients, and AC is the change in the
weight of moisture absorbed per unit weight of the lamina. The hy-
grothermal generalized nodal forces S™ and SM°* are added to the
mechanical generalized nodal forces S¥¢* in Eq. (40).

4. Updated Lagrangian formulation in the co-rotational reference
frame

4.1. Interpolation functions

The generalized displacement vector in a beam element with two
nodes and six degrees of freedom per node can be expressed as [30]

~ ul
U=Na-= [N1 Nz] s [
u

(53)
where N; contains the shape functions
¢ 0 0 O 0 0 ¢, 0 0 0 0 0
No|0NMOo 0 0 N o J0ON OO0 0 N
"o o Ny O -N, O 27 |0 0 N5 0 —N; O
00 0 ¢ 0 O 00 0¢ 0 0
54
¢ =1-& ¢,=¢
Ny = 1-38%2 + 283 N, = (6282 + &3, N; = 362283 Ny
= (-8 (55)

I is the length of the beam element, and ¢ is the non-dimensional co-
ordinate,

x—x}

§= i » 0<éE<),

(56)

and x; is the coordinate of first node along x;.
u' is the nodal degrees of freedom vector at node i in the UL co-
rotational frame ¢; in Fig. 1 (left):

wo=ufouyougoupous uglt = luly uzg uzg T My Myl =12
(57)

where 7} and 7;;0 are the nodal slopes in the 1-3 and 1-2 planes re-
spectively as shown in Fig. 1 (left).

The element generalized strains can be rewritten as
E=E +E' =B + B2, (58)

where
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BL
%9 0 0 0 0
Ox1
32Ny %N,
0o - e 0 0 0o - a2
- _oN N,
0 0 e g 0
0 0 o ¥ o o
| ax1
% 9 0 0 0 0
Ox1
32N3 52N4
0o - e 0 0 0o - e
_ PN 32Ny
0 0 e o 0
2}
0 0 0 -2 0
ax1 (59)
8" = LanN
2
0 oNy Oy oy ok 0 — ON, 0} o, Ot}
1 dx1 0x1  Ox1 8x1 dx1 6x1  Ox1 Ox1
= 2 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 oN3 Bz'ié' N3 Bﬁg Ny 6ﬁ3i A 51’4\%
Ox1 dx1  Ox1 Ox1 dx1 0x1  Ox1 dx1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 (60)
Therefore
SE = (Bt + 2B")54 = (B- + BY)54, (61)

where § indicates the variation.

4.2. Weak formulation of the beam element in the co-rotational reference

frame

The stress tensor is equal to the initial Cauchy stress, 73, plus the

incremental Piola-Kirchhoff stress, oy, in the UL co-rotational frame
Git = i + Ty (62)

The equilibrium static equation and boundary conditions in the
composite beam can be written as

el du;
a—xi[(o'i}c + Ti(l)c)(é}k + a_xi)] + b =0,

ou;
(o3 + Ti(l)c)(ajk + J)Hi—fi =0,
5xk

(63)

64

where b; are the body forces per unit volume in the current reference
state, and f; are the given boundary loads.

By taking du; to be the test function, the weak form of Egs. (63) and
(64) can be expressed as

0 auj auj

=0, (65)
where n; is the outward unit normal to the boundary surface S,.
By using the Divergence theorem and integration by parts, Eq. (65)
can be written as

S =8 ] sudv + [ boudv + [ fuds =0
v ik | Ojk axk joi y I ng ] (66)

Using Eq. (24), the incremental Piola-Kirchhoff stress can be written
as
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Table 1
Mechanical properties of Mat-A, and Mat-B.

Mechanical properties Mat-A Mat-B Unit
Ey 181 204 GPa
Ey 10.3 18.5 GPa
Ey 10.3 18.5 GPa
Vry 0.28 0.23 -
Vyy 0.4 0.4 -
Vg 0.28 0.23 -
Gxy 7.17 5.59 GPa
Gy 3.67 7.52 GPa
Gy 7.17 5.59 GPa
ay 0.02 6.1 um/m/°C
ay 22.5 30.3 um/m/°C
oy 22.5 30.3 pm/m/°C
By 0 0 m/m/kg/kg
By 0.6 0.6 m/m/kg/kg
By 0.6 0.6 m/m/kg/kg
O = O + O (67)
Therefore the first term of Eq. (66) could be developed as
0 (S + Wi)uy; = (5 + Touju + 03" + o + o) Uy,
5uw+(‘[ +o' )5ujl+‘r,k6( ujkujl)
+ ok S| =uicu; ),
. ( e (68)

1 1 .
where we used 5(Euj,kuj,i) = E(uj,kéuj,i + u;i0uj) = ujdu;; since
u,-J- = uj,i.

Using Eq. (68), and the definitions ¢ = u;, &) =
can be written as

%uk,luk,j: Eq. (66)

S @eef + fae))dv = [ boudv + js'ajgaujds
- [ i@

The right-hand side of Eq. (69) is the “correction” term in Newton-
Rapson type iterative approach. By assuming the cross sectional area of
the composite beam to be constant along x;-direction, and by using Eqgs.
(55)-(61), the integration terms in the above equation could be ex-
pressed as

+ ri}))c?s + o 55 Nldv. (69)
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Ne
aT JAYA LAl a aT NNT 0
; [5a J (B)DBdIA + 52 f[(B)rdl]

Ne

= D, [6aTF'-sa” S @@ + oM)di-saT [ (BNY s'dl],
1 1

e=1 (70)
where the summation is taken over all finite elements N,, and ' is the
external equivalent nodal force vector,
F'= [ NTbdl + £, 1)
where b* is the external body force vector per unit volume, and f* is the
external nodal boundary traction vector.

Eq. (70) can be rewritten as:

> [saT(R)a] = Z [5aT(F'-F%)],
B (72)
where K the symmetric stiffness matrix of the laminated composite
beam and is expressed as

N

R=k"+K". (73)
The linear and nonlinear parts of the stiffness matrix are

gL _ INTDRL N _ 0T

K—[(B)DBdl, R —./l'rlGGdl, 74)

where we used the fact that ff (B)"1%! = (ff 7'G'Gdlya = R"a, where

7{ is the first term of the initial Cauchy stress. F® is the internal nodal
force,

85 = LT (0 IN NYT 51,
P = [ B +oMdl + [ BV oldL 75)

. . . L as
By neglecting the nonlinear terms in the above equation, F~ can be
simplified as

B = [ ®di=1 [ (BYRdE.

(76)
The initial Cauchy stress in Eq. (76) can be written as
0 = SMech,O_sTh_sMoist (77)
Therefore Eq. (76) can be expanded as
&5 _ b INTQMech,0, 75 N e L INTMoist
F_sz(B)s dgz/O‘(B)Sdngo(B)s de 78)

4.3. Explicit expressions for the tangent stiffness matrix

The integration in Eq. (74) can be evaluated, and the 12 x 12
nonlinear stiffness matrix can be simplified as

Fig. 3. Six different laminates used in the simulations.

Mat-B 0=0°  2mm Mat-B  9=9¢0" 2 mm Mat-4  9=3¢0" 2 mm
Mat-B =90" 2mm Mat-A  g=0" 2mm Mat-B  g=45" 2mm
Mat-B 6=0"  2mm Mat-B  g=99° 2 mm Mat-A  9=30" 2 mm

Mat-B  9=10° 2 mm Mat-A  9=30" 2 mm
Mat-A  g=30" 2mm Mat-A  g=45" 2 mm
Mat-B  g=¢0° 2mm Mat-A  g=30" 2mm
Mat-B  9=10° 2 mm Mat-A  g=45" 2 mm Mat-A  g=45" 2 mm
Mat-A  g=30" 2 mm Mat-B  g=20" 2 mm Mat-A  g=30" 2mm
Mat-B  g=¢° 2mm Mat-4  9=40" 2mm Mat-4  9=45" 2mm
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"
: . X B _ 1] I
thedpozn;: 2 Applied force Ty 4,=0.002 i h= t;,x number of lamina
oM !
\ AT, AC utap —
v L=0.5 _ M e b=0.02
Fig. 4. Cantilever beam subjected to forces and moments in different directions at its tip.
0.25 0] ——————————— Fig. 5. (left) u, displacement, (right) ue rotation vs. P tip
—— Present Model — Present Model force on the laminated composite cantilever beam.
0.2}| = ~Nastran > 0.6 -_-_- Nastran
-= ANSYS g8 ANSYS
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— 015 = —_
E L Z E 0.4
& 01 x° 03
. 0.2 :
Laminate 1
0.05 Laminate 1
0.1
0 x - L 0 i i .
500 1000 1500 200C 500 1000 1500 2000
P,IN] P,[N
0.5 0 Fig. 6. (left) us, (right) u; displacements vs. Ps tip force on
—— Present Model the laminated composite cantilever beam.
------------ == == ANSYS
0.4 Laminate 2 | PSR IR .
£ 03
Laminate 1
0.2 1
= Present Model
‘== ANSYS ol
0'500 400 600 800 1000 500 400 600 800 1000
IP,| [N] 1P| [N]
03 = Fig. 7. (left) us displacement, (right) us rotation vs. P3 tip
’ 17| —— Present Model : force on the laminated composite cantilever beam.
== ANSYS
0.25 1 :
Laminate 6 08
= 02 5 —
E° == E o6
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E
~ 1.5 5 1
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1 o : — Present Model |
g = = =Nastran
005 Lapllinsss e om o ooz Fmb ANSYS 4
100 200 300 400 500 600
AT[K]
Fig. 8. u; displacement vs. AT with constant tip force P; = 10,000 N on the laminated
composite cantilever beam (Laminate 1 cross section).
[00 0 0 0 00 O O O O 0 ]
a 0 O 0 01 0 —a 0 0 0 0.1
a 0-01 0 O 0 —a 0 —-0.1 0
0 0 0 0 0 0 0 0 0
c 0 0 0 01 0 —d 0
KNZ‘L']O c 0-01 0 O 0 —d
0 0 0 0 0 0
a 0 0 0 —-0.1
sym. a 0 01 0
0 0 0
c 0
L c A
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where a = %; c= %; d= % and [ is the current length of the beam in
the current local reference frame. Again, the width of the laminated
composite beam, b, is assumed to be constant, and the integration in Eq.
(74) can be evaluated. The 12 X 12 linear stiffness matrix can be ex-

pressed as

AL AL
. b| R R,
K T oLy oL
XK)" K; (80)
where
(A 0o o -b ¢ o |
b2 A b2 A
TA 0 0 o =
1245 65
L z 0 -—3F 0
K, = b2 A ~ A 2 A
sym. aF 0
b2/\
I 34 (81
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-4 o0 0 b -C o
b2 A~ b2 A~
0 -%A o0 0 o =
12 5 65
o 0 o -3F 0 -2F 0
2 = A [P NPN A~ »2 A
D o o -YA-M G I
-C o °F G 2F o
bz/\ b2,\ bZ/\
| 0 —34 0 2 0 A (82)
A 0 o0 -b ¢ 0
B2 A~ b2 A~
A0 0 0o -Z4
125 65
~L TZF 0 TF 0
K; = bzﬁ 0 ~ bZB\
p+M -G -5
sym. aF 0
b2 A~
L 3] (83)

The 12 x 12 transformation matrix between the generalized local
coordinates of the deformed configuration of the composite beam ele-
ment and the global coordinates can be written in terms of A, given in

Eq. (9) as
Ag 0 0 O
0 4 0 0 000
A= 0 , 0=|0 0 o
0 0 A O 000
0 0 0 A (84)

Therefore, the generalized nodal displacement vector, the element
tangent stiffness matrix, and generalized nodal forces can be transferred
from the local coordinates to the global coordination as

~
~

=k ~r K N e ~k
a =MNak K =ANK'A; F =AF (85)

Now, the stiffness matrix can be assembled, and the finite element
system of equations can be expressed as:

Ka = FI—F5° (86)

At this stage, the Newton-Raphson algorithm can be used to solve
the above equation iteratively. The iterative process of the Newton-
Raphson method can be written as

K(ma(m = FL_pS(m (87)
where m is the iteration number and
1
S(m) — L\T ~0(m)
F _zfo (BLYT70m gE 88)
The total displacements for all nodes can then be written as
um+D) = ym L q0m) (89)

A Matlab code has been developed to implement the proposed for-
mulation, and solve the system of equations iteratively with applied
increments of the mechanical loads, until the total applied load is
reached and a converged solution is obtained.

— & - Original model
— + ~Deformed shape

Fig. 9. Deformation of the laminated composite cantilever beam for the case of P, = 16,000 N, AT = 300K (Laminate 1 cross section): (left) Nastran, (right) Present model.
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Fig. 10. Deformation of the laminated composite canti-

L I & - Original model lever beam for the case of P3 = —1000N, AT = 300K
- * ~Deformed shape (Laminate 1 cross section): (left) ANSYS and (right) Present
0paeepoce0e 50660 model.
e
—-0.1
X
0.2 X«
3 ‘Sk&
-0.3 it
0 0.1 02 03 04 05 06
x

B compare with ANSYS finite element tool results when loads are applied
) b perpendicular to the plane of the laminate. It is important to note that
,,‘,’,“”(‘,',:ﬁ,[ > My the proposed formulation is just modeling the laminated composite
it structures using 1D beam elements, while Nastran requires 2D plate
elements and ANSYS requires 3D Solid elements to model composite

' laminates.

14,=0.002 "
|
o 5.1. Large deformation analysis of a cantilever laminated composite beam
~5=0.02_

Fig. 11. L-shaped structure subjected to forces and moments.

5. Numerical examples

Several numerical examples are presented in this section to de-
monstrate the efficiency of the proposed method. The composite la-
minae used in this section are made of Mat-A and Mat-B whose prop-

erties are listed in Table 1. Six different composite laminates, illustrated

in Fig. 3, are used to demonstrate different cases of stacking sequence,
laminae materials, and symmetry.

Nastran-in-CAD finite element tool available with SolidWorks is
used in the first two examples in this section for comparison with the
results of the developed Matlab code for the proposed method. This tool
has the option of using a laminated composite material given the
stacking sequence and the material properties and thicknesses of all
laminae. Laminates should be defined on a shell, not a solid or struc-
tural elements such as beams, and loads should be applied only in the
plane of the shell. It was found that applying loads perpendicular to the
plane of the laminate in Nastran (2016) always give unrealistic results
as compared to ANSYS. This happens even if the full 3D material

properties of the laminae are given (the nine material properties of

orthotropic materials). Hence, in the following examples, we compare
the results of the developed Matlab code with Nastran results only when
the loads are applied in the plane of the composite laminate. We also

3

Consider a cantilever beam subjected to forces P;, P,, P3 and mo-
ments M;, My, M5 at its tip, in addition to temperature and moisture
change on the whole beam, as shown in Fig. 4. The beam is made of a
fiber-reinforced composite laminate with a rectangular cross section, as
shown in Fig. 3. The length of the beam is L = 0.5m, its width is
b = 0.02m, and the thickness of each lamina is t; = 0.002 m. The beam
is analyzed for different cases of loadings using the developed Matlab
code for the proposed method as well as using ANSYS and Nastran finite
element packages.

To find the solution that best balances computational capacity and
accuracy, convergence study has been performed for Nastran, ANSYS
and the proposed method for the cantilever beam model. The con-
vergence study on Nastran and ANSYS began with 22 2D square shell
elements and 40 3D solid cube elements along x; direction respectively.
The mesh density has been increased until convergence was reached
with 225 2D shell elements along x; direction for Nastran model, 234
3D solid elements along x; direction for ANSYS model and 30 1D beam
element along x; direction for the developed Matlab code. Total
number of 2D elements in Nastran is 2030 corresponding to 2263
nodes, total number of 3D solid elements in ANSYS is 2361 corre-
sponding to 2576 nodes and total number of 1D elements in Matlab is
30 corresponding to 31 nodes.

The results of the different applied mechanical and hygrothermal
loads on beams made of a laminated fiber-reinforced composite with a
rectangular cross section as shown in Fig. 4 are presented in Figs. 5-10
using the proposed method, Nastran and ANSYS. Specifically, Fig. 5

3

x 10 x 10
0.06 e — 15
—— Present Model —— Present Model Lo
0.05 |~ = =Nastran Laminate 27 81 |- - ~Nastran L
Laminate 2, 2
. 0.04 6 2 -
5 - . £
S E L =
0,03 - 2 i
o =74 _Z il
2 4 N
0.02 Laminate 1 ,
0.01 - Laminate | —— Present Model
: = = =Nastran )
0.5 1 1.5 2 2. 0.5 1 'i)5 - 225 3 %% 10 200 300 400 500 600
PI*P_,[N] <10 ,[ ] x 10° AT [K]

Fig. 12. Laminated composite L-shaped structure: (left) u; = u, displacements vs P; = P, tip forces, (middle) u; displacement vs P, tip force, (right) u; = u, vs AT with constant tip forces

P, = P, = 20,000 N (Laminate 2).
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0.1+ ©  Original model
* ~ Deformed shape
- 2 - Original model 0.05 -
' Deformed shape
. 0
-0.05
0.1
0 T .
0.1 T e
02 T — :
03 T 0.1
3 0 x,

Fig. 13. Deformation of the laminated composite L-shaped structure with Laminate 1 cross section: (left) P; = P, = 5,120,000 N Nastran and (middle) Present model, (right)

P3 = —10,000N.
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Fig. 15. 3D composite frame structure subjected to forces and moments in different directions (left) on a single point, (right) on two points.
T T T T T Fig. 16. (left) uz displacement vs P3 force, (right) u4 ro-
0.04 —— Laminate 3 J 1 —— Laminate 3 ] tation vs M; moment on the mid point of the upper
= = ~Laminate 4 = = = Laminate 4 middle member of the laminated composite 3D frame.
0.035 5 P =
0.8 ]
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0.015 : b i nesn] o EE
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shows u, and ug (rotation about x3 axis) at the beam tip for increasing
values of applied force P,. Applying force P3 at the tip of the composite
beam, Fig. 6 shows u3 and u; at the beam tip with Laminates 1 and 2
rectangular cross sections, while Fig. 7 shows u3 and us (rotation about
X5 axis) with Laminates 5 and 6 for increasing values of Ps. Fig. 8 shows
the effect of temperature on u; with constant P; = 10,000 N applied
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force. Excellent agreement with Nastran and ANSYS can be seen in all
cases. The maximum error percent is less than 5% in all cases. Fig. 9
shows the deformation of Nastran model and the proposed method with
Laminate 1 cross section for the case of P, = 16,000 N, AT = 300 K. For
this specific case, Nastran takes 26 minutes and 5 seconds to find the
solution, while the developed Matlab code takes only 1 minute and
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Fig. 17. Deformation of the laminated composite

Deformed < 3D frame structure subjected to (left) force
~ * ~Deformed shape - & = Original model : :
gip o P3; = —10,000N on the mid point of the upper
> e middle member, (right) forces Ps;; =P3,
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Fig. 18. (left) u3 displacement, (middle) us rotation vs P3; = P35, (left) us vs M;; = M; 5 (with constant forces P3; = P35 = 400,000 N) applied on the two ends of the upper middle

member of the laminated composite 3D frame.

39 seconds to solve the problem. This is 6.3% the time required by
Nastran. Fig. 10 shows the deformation of ANSYS model and the pro-
posed method with Laminate 1 rectangular cross section for the case of
P; = —1000N, AT = 300K. For this specific case, ANSYS takes
3 minutes and 37 seconds to find the solution, while the developed
Matlab code takes only 44 seconds to solve the problem. This is 20.2%
the time required by ANSYS.

5.2. Large deformation analysis of simply supported L-shape structure

In this example, an L-shaped structure is subjected to forces Py, Ps,
P; and moments M;, M5, M3 at the illustrated point in Fig. 11 as well as
changes in temperature and moisture content on the whole structure.
This structure has two equal side lengths L; = L,=0.25m, and has two
fixed points at its two ends. Each side of this structure is a laminated
composite beam with a rectangular cross-section of width b = 0.02 m.
The element size of both Matlab code and Nastran models are equal to
the element size of the cantilever beam example. Accordingly, in this
example, 30 1D beam elements (31 nodes) are used to model the
structure using the developed method, while 2029 2D elements (216 2D
shell elements along x; direction) corresponding to 6573 nodes are used
to model the L-shaped structure in SolidWorks with Nastran-in-CAD
tool.

The displacement of the load-application point in the laminated
composite L-shaped structure made of two different composite lami-
nates for the different applied mechanical and hygrothermal loads are
presented in Fig. 12 for the present method and Nastran. Excellent
agreement can be seen in all cases. Fig. 13 (left and middle) show the
deformation of both Matlab code and Nastran models with Laminate 1
cross section for the case of P, = P, = 5,120,000 N. Fig. 14 shows the
u3 displacement of the load-application point when P3 force is applied.
As was mentioned earlier, Nastran (2016) provides unrealistic large
deformations when the load is applied perpendicular to the plane of the
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laminate. Fig. 13 (right) shows the deformation of the same structure
with P3 = —10,000 N applied using the developed Matlab code.

5.3. Large deformation analysis of a composite 3D frame

In this example, a 3D frame structure, shown in Fig. 15, is subjected
to forces Py, P,, P3 and moments M;, M5, M3 at the illustrated points in
the figure (center point, or two end points of the upper middle member)
as well as changes in temperature and moisture content on the whole
structure. All sides have equal lengths L; = Ly=L3; = L4=0.25m, and
four points are fixed as shown. Each member of the frame is a com-
posite beam with any of the cross-sections illustrated in Fig. 3, and
width b = 0.02m. Four beam elements are used for each member,
hence 96 beam elements (84 nodes) are used to model the 3D frame.
The displacement of the load-application point of the laminated com-
posite 3D frame in Fig. 15 (left) made of the two different composite
laminates for applied P3 and M; are presented in Fig. 16. Nastran tool
will never yield answers for loads applied normal to the plane of the
laminate. Hence, this problem cannot be solved using Nastran. Fig. 17
(left) shows the deformation of the laminated composite 3D frame
structure with Laminate 3 cross section for the case of P; = —10,000 N.

The displacement and rotation of the center point of the upper
middle member of the laminated composite 3D frame structure made
laminates 3 and 4 for applied P3; = P3, and M; ; = M, 5 loads at the
two ends of the upper middle member are presented in Fig. 18. Fig. 17
(right) shows the deformation for the case of P3; = P3 > = 1,600,000 N.

6. Conclusions

Combining Von Karman’s nonlinear theory with the composite la-
mination theory, and using a co-rotational element reference frame as
the Updated Lagrangian formulation, an explicit expression of the
tangent stiffness matrix of laminated composite beam element
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undergoing large deformation and rotation has been obtained and uti-
lized in analyzing different structures subjected to multiple mechanical
and hygrothermal loads. The proposed approach has been verified by
comparison with the results of Nastran and ANSYS finite element tools
that enable modeling laminated composites, and the differences in the
resulting displacements and rotations are less than 5% in all examples
and cases. The developed beam element is much more efficient than
using composite laminate tools in FEA software because of the ability to
model such composites using 1D beam elements rather than 2D plate/
shell or 3D solid elements. With structures undergoing large deforma-
tions, the computational time is less than 7% the time needed for sol-
ving the problem using Nastran shell elements and less than 21% using
ANSYS 3D solid elements. The developed model will be very useful in
modeling and designing flexible composites which have a lot of new
applications, such as morphing aerospace structures and flexible robots.
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