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A B S T R A C T

In this paper, based on Von Kármán’s nonlinear theory and the classical lamination theory, a closed form ex-
pression is derived for the tangent stiffness matrix of a laminated composite beam element undergoing large
deformation and rotation under mechanical and hygrothermal loads. Stretching, bending and torsion have been
considered. A co-rotational element reference frame is used as the Updated Lagrangian (UL) formulation. The
model has been verified in different problems by comparison with the results of Nastran and ANSYS composite
laminate tools, and the difference in the resulting large deformations is less than 5%. The major advantage of the
proposed approach is that the composite structure is modeled using 1D beam elements rather than 2D shell or 3D
solid elements as in the case of Nastran and ANSYS where laminates are defined over surfaces or 3D solids. The
availability of an explicit expression for the tangent stiffness matrix makes the proposed model highly efficient
specially when dealing with large composite space frame structures. The saving in computational time could
reach 93% compared to regular FE software packages. The developed model is very useful for modeling and
designing flexible composites used in new applications such as morphing aerospace structures and flexible ro-
bots.

1. Introduction

With the appearance of new technologies and inventions in the
fields of automotive design, aerospace structures, smart structures, and
robotics, the design and manufacturing of laminated composite mate-
rials have seen a lot of development. Beside the well-known applica-
tions of fiber-reinforced laminated composite materials because of their
various advantages, such as high specific stiffness and strength, high
corrosion resistance, good thermal insulation, fatigue resistance and
damping properties, new applications of composite materials emerged
that necessitate the development of new effective and efficient tools and
approaches in design and simulation. For example, a lot of smart ma-
terial elements, such as shape memory alloy (SMA) wires or ribbons and
piezoelectric patches or fibers, are embedded in polymer composite
laminates to form smart composite structures with multi-functions such
as sensing, actuating and load bearing [1–3]. Another example is the
design of morphing aerospace structures, such as morphing wings with
flexible seamless control surfaces or flexible winglets [4]. The design of
such structures is challenging because of the need to have flexible, yet
strong, wing skins that can morph to different shapes and still be able to
stand aerodynamic loads. Composite actuators combining shape

memory wires, glass fibers in a soft matrix that could morph into
complex shapes utilizing coupling effects for in-plane, out-of-plane, and
twisting deformations have been proposed [5–7] and applied to inter-
esting applications such as turtle-like swimming robot [8] and
morphing car spoiler [9]. Another example is robotic arms and ma-
nipulators made of flexible laminated composite end-effectors [10,11].
Flexible composites are manufactured as reinforcing fibers in flexible
matrix. Such flexible composites undergo large deformations, hence for
modeling these structures, geometric nonlinearity should be con-
sidered. In addition, composite beams and plates with high slenderness
ratios, normally undergo large displacements and rotations even
without reaching large strains and/or overcoming the material’s elastic
limit [12]. Hence, it is critical to develop computational tools to effi-
ciently and accurately predict the deformation of such composite
structures subjected to any mechanical or hygrothermal loads. This will
also be very useful in the design process where large number of itera-
tions are to be done sweeping the parameters in the design space to
achieve the desired goals.

Introducing geometric nonlinearity to structures is an option in al-
most all available commercial finite element software nowadays, such
as ANSYS, ABAQUS, and MSC Nastran. Defining a composite layup
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given the material properties of all plies, their fiber orientations and
thicknesses can also be done in all the aforementioned software in
addition to SOLIDWORKS Simulation, Autodesk Simulation
Mechanical, and Nastran-in-CAD tool integrated in any CAD software
such as SOLIDWORKS or Autodesk Inventor. Composite laminates are
defined in these software on a surface or 3D solid to be meshed using 2D
plate or shell elements or 3D solid elements, respectively. Composite
laminates cannot be defined on lines to model beams or 3D frames.
Hence, the computational cost of performing geometrically nonlinear
static or dynamic analyses on large composite structures, such as
trusses, frames or idealized structures, becomes very high. The devel-
opment of a 3D frame element for the geometric nonlinear analysis of
laminated composite beams will then be very effective and efficient due
to the expected simplicity and low computational costs.

Several three-dimensional frame finite element formulations for the
geometric nonlinear analysis of thin-walled laminated composite beams
have been developed during the last two decades. Bhaskar and Librescu
[13,14] developed nonlinear theory of thin-walled composite beams
with closed and open sections taking into account the transverse shear
deformation effect while the warping torsion component was neglected.
Omidvar and Ghorbanpoor [15] and Cardoso et al. [16] proposed a
three-dimensional nonlinear finite element models for thin-walled
open-section composite beams with symmetric stacking sequence, in-
cluding the warping effect, and based on the Updated Lagrangian (UL)
formulation. Based on Von Kármán strain tensor, Vo and Lee [17,18]
developed three-dimensional thin-walled laminated beam elements
with open sections, and investigated the effects of fiber orientation,
geometric nonlinearity, and shear deformation on the axial–-
flexural–torsional response. Mororó et al. [12] developed three-di-
mensional thin-walled laminated beam elements with closed sections
using Total Lagrangian (TL) formulation allowing large displacements
and moderate rotations, but without the effects of warping and trans-
verse shear. Saravia [18] developed consistent large deformation-small
strain formulation for thin-walled composite beams (TWCB) calling it a
“geometrically exact TWCB formulation” suitable for modeling high
aspect ratio composite beams that undergo large rigid body motions,
such as wind turbine wings, satellite arms and automotive body stif-
feners. Turkalj [20] presented a beam formulation for large displace-
ment analysis of composite frames considering the flexibility of the
connections.

Atluri and his co-workers extensively studied large rotations in
beams, plates and shells, and attendant variational principles (see
[21–24]). Explicit derivations of the tangent stiffness matrix of 3D
frames including elasto-plasticity were derived [25–27] without em-
ploying either numerical or symbolic integrations. Based on a Von
Kármán type nonlinear theory in rotated reference frames, Cai et al.
[28] developed a simple geometrically nonlinear large-rotation beam
element with arbitrary cross-section using a co-rotational reference
frame for each finitely rotated beam element as the UL reference frame

for the respective element, and accounting for stretching, bending and
torsion. An explicit expression of a symmetric tangent stiffness matrix
of the beam element in the co-rotational frame was derived and vali-
dated in multiple numerical examples of space frames undergoing large
deformations.

Even in the simplest formulation of the aforementioned works that
presented geometrically nonlinear composite beams [12–20], an ex-
plicit expression for the tangent stiffness matrix could not be reached.
Hence in this work, a finite element formulation of laminated compo-
site beams undergoing large deformation and rotation, in response to
mechanical or hygrothermal loads, is developed based on Von Kármán
nonlinear theory and the classical lamination theory. Stretching,
bending, and torsion has been accounted for, and a closed form ex-
pression of the element tangent stiffness matrix has been derived, uti-
lizing the element’s co-rotational reference frame as the UL formula-
tion. The model has been verified in different problems by comparison
with Nastran and ANSYS results. In all problems, the difference in the
resulting deformations is less than 5%. The relative simplicity of the
derived explicit tangent stiffness matrix is one of the major advantages
of the proposed approach, which makes large deformation analyses of
laminated composite beams highly efficient specially when dealing
with large composite space frame structures.

2. Transformation between the global and the deformation-
dependent co-rotational local frames of reference

Consider a beam element made up of fiber-reinforced composite
laminate in the initial configuration and then deforms to the deformed
configuration when loads are applied on it, as shown in Fig. 1 (left). The
global coordinate system is denoted − −∼ ∼ ∼∼ ∼ ∼

x x x1 2 3, with ̃ ̃ ̃− −∼ ∼ ∼e e e1 2 3 as the unit
vectors in the directions of the three global axes. − −∼ ∼ ∼x x x1 2 3 and − −x x x1 2 3

are the coordinate syst of the initial and deformed configurations re-
spectively, with corresponding unit vectors ̃ ̃ ̃− −e e e1 2 3 and − −e e e1 2 3, re-
spectively as shown in Fig. 1 (left).

The unit vectors of the initial configuration are defined as follows: ̃e1
is simply defined using the nodal coordinates of the element’s two end
nodes,

̃ ̃ ̃ ̃= + +∼ ∼ ∼∼ ∼ ∼e x e x e x e L(Δ Δ Δ )/ ,1 1 1 2 2 3 3 (1)

where = −∼ ∼ ∼x x xΔ 1 1
(2)

1
(1); = −∼ ∼ ∼x x xΔ 2 2

(2)
2
(1); = −∼ ∼ ∼x x xΔ 3 3

(2)
3
(1);

= + +∼ ∼ ∼L x x x(Δ ) (Δ ) (Δ )1
2

2
2

3
2 , and the superscript (j) in ∼xi

j( ) indicates
the node number.

̃e2 is perpendicular to ̃∼e3 and ̃e1, while ̃e3 is perpendicular to ̃e1 and ̃e2:

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃= × × = − + = ×∼ ∼ ∼ ∼∼ ∼e e e e e x e x e Z e e e( )/| | ( Δ Δ )/ ; ,2 3 1 3 1 2 1 1 2 3 1 2 (2)

where = +∼ ∼Z x x(Δ ) (Δ )1
2

2
2 .

Therefore, the relation between ̃ ̃ ̃e e e, ,1 2 3 and ̃ ̃ ̃∼ ∼ ∼e e e, ,1 2 3 could be written
in matrix form as:

Fig. 1. (left) Kinematic diagram of the laminated composite 3D beam element, (right) Laminated composite beam subjected to torsion, bending moments and axial force.

A.R. Sofi et al. Composite Structures 187 (2018) 566–578

567



̃
̃
̃

̃
̃
̃

⎧

⎨
⎩

⎫

⎬
⎭

=
⎡

⎣

⎢
⎢

−
− −

⎤

⎦

⎥
⎥

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪

∼
∼
∼

∼ ∼ ∼
∼ ∼

∼ ∼ ∼ ∼

e
e
e ZL

Z x Z x Z x
L x L x
x x x x Z

e
e
e

1
Δ Δ Δ
Δ Δ 0

Δ Δ Δ Δ

1

2

3

1 2 3

2 1

1 3 2 3
2

1

2

3 (3)

The unit vectors in the directions of the deformed configuration
coordinates are defined as follows: e1 depends on the nodal coordinates
of the deformed beam element,

̃ ̃ ̃= + +∼ ∼ ∼e x e x e x e l(Δ Δ Δ )/ ,1 1 1 2 2 3 3 (4)

where = −x x xΔ 1 1
(2)

1
(1); = −x x xΔ 2 2

(2)
2
(1); = −x x xΔ 3 3

(2)
3
(1); =l

+ +x x x(Δ ) (Δ ) (Δ )1
2

2
2

3
2 . e2 is perpendicular to ̃e3 and e1, while e3 is

perpendicular to e1 and e2:

̃ ̃= × × = ×e e e e e e e e( )/| |; .2 3 1 3 1 3 1 2 (5)

Now, e1 and ̃e3 can be written as:

̃ ̃ ̃ ̃ ̃ ̃ ̃= + + = + +∼ ∼ ∼ ∼ ∼ ∼e a e a e a e e c e c e c e; ,1 1 1 2 2 3 3 3 1 1 2 2 3 3 (6)

where =a x
l1

Δ 1 ; =a x
l2

Δ 2 ; =a x
l3

Δ 3 , and = − ∼ ∼
c x x

ZL1
Δ Δ1 3 ; = − ∼ ∼

c x x
ZL2

Δ Δ2 3 ; =c Z
L3 .

Using Eq. (5), e2 could be expressed as:

̃ ̃ ̃
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= − + − + −

= + +
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Finally e3 takes the form:

̃ ̃ ̃= − + − + −∼ ∼ ∼e a b a b e a b a b e a b a b e( ) ( ) ( )3 2 3 3 2 1 3 1 1 3 2 1 2 2 1 3 (8)

Therefore, the relationship between e e e, ,1 2 3 and ̃ ̃ ̃∼ ∼ ∼e e e, ,1 2 3 is written in
matrix form as
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λ0 is the transformation matrix between e e e, ,1 2 3 and ̃ ̃ ̃∼ ∼ ∼e e e, ,1 2 3.

3. Von Kármán nonlinear theory for a beam with large
deformation

As shown in Fig. 1 (right), the laminated composite beam is sub-
jected to torsion T about x1 direction, and bending moments M22 and
M33 about x3 and x2 directions, respectively. The cross-sectional area is
assumed to be constant throughout the deformation of the composite
beam. The displacements of the beam’s centerline are denoted
u x u x u x( ), ( ), ( )10 1 20 1 30 1 . The bending deformations resulting from M33

and M22 are ∂ ∂x u x( / )3 30 1 and ∂ ∂x u x( / )2 20 1 respectively. The total torsion
of the beam about x1 due to the torque T is denoted τ x( )1 .

With the above definitions and Fig. 1 (right), it is possible to write
three equations for the total displacements of the composite beam in x1,
x2 and x3 directions:

= − ∂
∂

− ∂
∂

= −

= +

u u x x u
x

x u
x

u u x x τ x u

u x x τ x

( ) ; ( ) ( );

( ) ( ).

1 10 1 2
20
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30

1
2 20 1 3 1 3

30 1 2 1 (10)

3.1. Strain-displacement relations

Green-Lagrange strain-displacement relations describing the large
deformations of the thin composite beam based on Von Kármán’s
nonlinear theory take the following forms: Axial strain in the x1 di-
rection:
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u
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i
j
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i2 0

1
2 are used. The

terms that contain u( )10,1
2, u( )X10,1 22, u( )X10,1 33, X22

2 , X33
2 and X X22 33 are

assumed to be very small compared to X22, X33 and u10,1. Therefore, these
terms are neglected in the further development of the strain-displace-
ment relations. ε11 is then expressed as,
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Similarly, the other normal and shear strain components are ex-
pressed as:
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where = ∂
∂η τ

x1
. The strain tensor written in matrix form can now be

written as linear and nonlinear components:
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where = ≠γ ε i j2 ( )ij ij are the engineering shear strains. As shown in Eq.
(20), ε22 and ε33 do not have any linear terms and their nonlinear terms
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are relatively small. Therefore, these normal strains that are perpen-
dicular to the beam's longitudinal direction could be neglected, and the
linear and nonlinear strains can be reduced to:
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3.2. Stress-strain relations

Considering each composite lamina to have linear elastic material
behavior, the additional second Piola-Kirchhoff stress tensor written in
matrix form could be written as [29]:
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′ ′ ′E E E, ,x y z are the three Young’s moduli, ′ ′ ′ ′ ′ ′v v v, ,x y y z z x are the three
Poisson’s ratios, and ′ ′ ′ ′ ′ ′G G G, ,x y y z z x are the three shear moduli in the
local axes of the orthotropic lamina shown in Fig. 2 (right). =c θcos
and =s θsin .

As was mentioned earlier, ε22, ε33 and γ23 strains are neglected, hence
we do not consider the associated stresses. The stress-strain relations in
a single lamina can then be written as

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
=

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
+

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
=

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛

⎝

⎜
⎜⎜

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
+

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪

⎞

⎠

⎟
⎟⎟

σ
σ
σ

σ
σ
σ

σ
σ
σ

Q Q Q
Q Q Q
Q Q Q

ε
γ

γ

ε
γ

γ

L

L

L

N

N

N

L

L

L

N

N

N

11
1

31
1

12
1

11
1

31
1

12
1

11
1

31
1

12
1

11 15 16

51 55 56

61 56 66

11

31

12

11

31

12 (24)

Fig. 2 (left) shows the cross section of the composite beam made up
of n laminae, where each lamina could be made of different material
and have different fiber orientation angle θk. The total thickness of the
laminate is = ∑ =h ti

n
i1 and the location of the top and bottom surfaces

of ply k are expressed as:

∑ ∑= − + = − +−
=

= −

=

=

h h t h h t
2

(top);
2

(bottom)k
i

i k

i k
i

i k

i1
1

1

1 (25)

where = … − −k n n2,3, , 2, 1.
The nodal axial force in the beam’s longitudinal direction (x1-di-

rection) could be expressed as

∫= + = +N N N σ σ dA( )L N
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11 11 11 11
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11
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(26)

Using Eqs. (24) and (21), we can write the linear component of N11
as
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where the term ∫ +Q Q η x dx dx( X )A 11 22 15 2 2 3 vanishes because the in-
tegration in x2 direction is always from −b/2 to b/2. Similarly, the
nonlinear component of N11 becomes
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The axial force, N11 can then be written as:

̂ ̂ ̂= + ≃ + −N N N bA ε bC bDηX ,L N
11 11 11 0

11
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The nodal bending moments about x2 and x3 (M33 and M22), and the
nodal torque about x1 (T) can be developed similarly to get:

Fig. 2. Schematic of the laminated fiber-reinforced com-
posite beam cross section (left), and fiber orientation in a
single lamina (right).
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The generalized nodal forces can then be written in matrix form as

=S DE, (35)
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Now define the generalized displacement vector as
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The generalized strain vector can be expressed as linear and non-
linear components
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The element generalized mechanical stress vector can be written as

= + = +S DE DE S SMech L N L N (40)

3.3. Hygrothermal effects

The global coefficients of thermal expansion in a single lamina are
related to the local ones through the transformation matrix as follows:

= −α T α ,G L
1 (41)

where = ⎡
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The thermal stresses in a single lamina due to a temperature change

T(Δ ) can then be written as
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By neglecting σTh
22 , σTh

33 and σTh
23 as was done before, we get
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The nodal axial thermal force in x1 direction can be expressed as

̂
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The nodal bending moments about x2 and x3 (MTh
33 and MTh

22 ) and the
total torque about x1 (TTh) due to temperature change are derived si-
milarly to get
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The generalized nodal forces due to temperature change can then be
written in matrix form as
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Following the same process, the generalized nodal forces due to
moisture absorption can be derived as
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βij are the moisture expansion coefficients, and CΔ is the change in the
weight of moisture absorbed per unit weight of the lamina. The hy-
grothermal generalized nodal forces STh and SMoist are added to the
mechanical generalized nodal forces SMech in Eq. (40).

4. Updated Lagrangian formulation in the co-rotational reference
frame

4.1. Interpolation functions

The generalized displacement vector in a beam element with two
nodes and six degrees of freedom per node can be expressed as [30]
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where Ni contains the shape functions
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l is the length of the beam element, and ξ is the non-dimensional co-
ordinate,

=
−

< <ξ
x x

l
ξ, (0 1),1 1

1

(56)

and x1
1 is the coordinate of first node along x1.

ui is the nodal degrees of freedom vector at node i in the UL co-
rotational frame ei in Fig. 1 (left):

= = =u u u u u u u u u τ η η iu [ ] [ ] , [ 1,2]i i i i i i i T i i i i i i T
1 2 3 4 5 6 10 20 30 20 30

(57)

where η i
20 and η i

30 are the nodal slopes in the 1–3 and 1–2 planes re-
spectively as shown in Fig. 1 (left).

The element generalized strains can be rewritten as
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(60)

Therefore

̂ ̂ ̂= + = +δ δ δE B B a B B a( 2 ) ( ) ,L N L N (61)

where δ indicates the variation.

4.2. Weak formulation of the beam element in the co-rotational reference
frame

The stress tensor is equal to the initial Cauchy stress, τik
0 , plus the

incremental Piola-Kirchhoff stress, σik
1 , in the UL co-rotational frame

= +σ σ τ .ik ik ik
1 0 (62)

The equilibrium static equation and boundary conditions in the
composite beam can be written as
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where bj are the body forces per unit volume in the current reference
state, and f j are the given boundary loads.

By taking δuj to be the test function, the weak form of Eqs. (63) and
(64) can be expressed as
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j
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i i j
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(65)

where ni is the outward unit normal to the boundary surface Sσ.
By using the Divergence theorem and integration by parts, Eq. (65)

can be written as

∫ ∫ ∫⎜ ⎟− ⎛
⎝

+
∂
∂

⎞
⎠

+ + =σ δ
u
x

δu dV b δu dV f δu dS 0
V ik jk

j

k
j i V j j S j j,

σ (66)

Using Eq. (24), the incremental Piola-Kirchhoff stress can be written
as
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= +σ σ σik ik
L

ik
N1 1 1 (67)

Therefore the first term of Eq. (66) could be developed as
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where we used = + =( )δ u u u δu u δu u δu( )j k j i j k j i j i j k j k j i
1
2 , ,

1
2 , , , , , , since

=u ui j j i, , .
Using Eq. (68), and the definitions =ε uij

L
i j, , =ε u uij

N
k i k j

1
2 , , , Eq. (66)

can be written as
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The right-hand side of Eq. (69) is the “correction” term in Newton-
Rapson type iterative approach. By assuming the cross sectional area of
the composite beam to be constant along x1-direction, and by using Eqs.
(55)–(61), the integration terms in the above equation could be ex-
pressed as
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0

1

1 0 1 1

e

e

(70)

where the summation is taken over all finite elements Ne, and ̂F1 is the
external equivalent nodal force vector,

̂ ∫= +∗ ∗dlF N b f ,
l

T1
(71)

where ∗b is the external body force vector per unit volume, and ∗f is the
external nodal boundary traction vector.

Eq. (70) can be rewritten as:

̂ ̂ ̂ ̂ ̂ ̂∑ ∑= −δ δa K a a F F[ ( ) ] [ ( )],
e

T

e

T S1

(72)

where ̂K the symmetric stiffness matrix of the laminated composite
beam and is expressed as

̂ ̂ ̂= +K K K .L N (73)

The linear and nonlinear parts of the stiffness matrix are

̂ ̂∫ ∫= =dl τ dlK B DB K G G( ) , ,L

l
L T L N

l
T

1
0

(74)

where we used the fact that ̂ ̂ ̂∫ ∫= =dl τ dlB τ G G a K a( ) ( )l
N T

l
T N0

1
0 , where

τ1
0 is the first term of the initial Cauchy stress. ̂FS is the internal nodal
force,

̂ ∫ ∫= + +dl dlF B τ σ B σ( ) ( ) ( ) .S

l
L T N

l
N T0 1 1

(75)

By neglecting the nonlinear terms in the above equation, ̂FS can be
simplified as

̂ ∫ ∫= =dl l dξF B τ B τ( ) ( ) .S

l
L T L T0

0

1 0
(76)

The initial Cauchy stress in Eq. (76) can be written as

= − −τ S S SMech Th Moist0 ,0 (77)

Therefore Eq. (76) can be expanded as

̂ ∫ ∫ ∫= − −l dξ l dξ l dξF B S B S B S( ) ( ) ( )S L T Mech L T Th L T Moist
0

1 ,0
0

1

0

1

(78)

4.3. Explicit expressions for the tangent stiffness matrix

The integration in Eq. (74) can be evaluated, and the 12×12
nonlinear stiffness matrix can be simplified as

Table 1
Mechanical properties of Mat-A, and Mat-B.

Mechanical properties Mat-A Mat-B Unit

′E x 181 204 GPa
′E y 10.3 18.5 GPa

′E z 10.3 18.5 GPa

′ ′v x y 0.28 0.23 –

′ ′v y z 0.4 0.4 –

′ ′v x z 0.28 0.23 –
′ ′Gx y 7.17 5.59 GPa

′ ′G y z 3.67 7.52 GPa

′ ′Gz x 7.17 5.59 GPa
′α x 0.02 6.1 °μm/m/ C
′α y 22.5 30.3 °μm/m/ C
′αz 22.5 30.3 °μm/m/ C
′βx 0 0 m/m/kg/kg

′βy 0.6 0.6 m/m/kg/kg

′βz 0.6 0.6 m/m/kg/kg

Fig. 3. Six different laminates used in the simulations.
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Fig. 4. Cantilever beam subjected to forces and moments in different directions at its tip.

Fig. 5. (left) u2 displacement, (right) u6 rotation vs. P2 tip
force on the laminated composite cantilever beam.

Fig. 6. (left) u3, (right) u1 displacements vs. P3 tip force on
the laminated composite cantilever beam.

Fig. 7. (left) u3 displacement, (right) u5 rotation vs. P3 tip
force on the laminated composite cantilever beam.
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where =a l
1.2 ; =c l2

15 ; =d l
30 and l is the current length of the beam in

the current local reference frame. Again, the width of the laminated
composite beam, b, is assumed to be constant, and the integration in Eq.
(74) can be evaluated. The 12×12 linear stiffness matrix can be ex-
pressed as
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The 12× 12 transformation matrix between the generalized local
coordinates of the deformed configuration of the composite beam ele-
ment and the global coordinates can be written in terms of λ0 given in
Eq. (9) as
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.

0

0

0
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Therefore, the generalized nodal displacement vector, the element
tangent stiffness matrix, and generalized nodal forces can be transferred
from the local coordinates to the global coordination as

̃ ̂ ̂ ̂= = =∼∼∼∼a λ a K λ K λ F λ F; ;͠ k T k
k

T k k
T k (85)

Now, the stiffness matrix can be assembled, and the finite element
system of equations can be expressed as:

= −Ka F FS1 0 (86)

At this stage, the Newton-Raphson algorithm can be used to solve
the above equation iteratively. The iterative process of the Newton-
Raphson method can be written as

= −K a F Fm m S m( ) ( ) 1 ( ) (87)

where m is the iteration number and

∫= l dξF B τ( )S m L T m( )
0

1 0( )
(88)

The total displacements for all nodes can then be written as

= ++u u am m m( 1) ( ) ( ) (89)

A Matlab code has been developed to implement the proposed for-
mulation, and solve the system of equations iteratively with applied
increments of the mechanical loads, until the total applied load is
reached and a converged solution is obtained.

Fig. 8. u1 displacement vs. ΔT with constant tip force P1= 10,000 N on the laminated
composite cantilever beam (Laminate 1 cross section).

Fig. 9. Deformation of the laminated composite cantilever beam for the case of P2= 16,000 N, ΔT=300 K (Laminate 1 cross section): (left) Nastran, (right) Present model.
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5. Numerical examples

Several numerical examples are presented in this section to de-
monstrate the efficiency of the proposed method. The composite la-
minae used in this section are made of Mat-A and Mat-B whose prop-
erties are listed in Table 1. Six different composite laminates, illustrated
in Fig. 3, are used to demonstrate different cases of stacking sequence,
laminae materials, and symmetry.

Nastran-in-CAD finite element tool available with SolidWorks is
used in the first two examples in this section for comparison with the
results of the developed Matlab code for the proposed method. This tool
has the option of using a laminated composite material given the
stacking sequence and the material properties and thicknesses of all
laminae. Laminates should be defined on a shell, not a solid or struc-
tural elements such as beams, and loads should be applied only in the
plane of the shell. It was found that applying loads perpendicular to the
plane of the laminate in Nastran (2016) always give unrealistic results
as compared to ANSYS. This happens even if the full 3D material
properties of the laminae are given (the nine material properties of
orthotropic materials). Hence, in the following examples, we compare
the results of the developed Matlab code with Nastran results only when
the loads are applied in the plane of the composite laminate. We also

compare with ANSYS finite element tool results when loads are applied
perpendicular to the plane of the laminate. It is important to note that
the proposed formulation is just modeling the laminated composite
structures using 1D beam elements, while Nastran requires 2D plate
elements and ANSYS requires 3D Solid elements to model composite
laminates.

5.1. Large deformation analysis of a cantilever laminated composite beam

Consider a cantilever beam subjected to forces P1, P2, P3 and mo-
ments M1, M2, M3 at its tip, in addition to temperature and moisture
change on the whole beam, as shown in Fig. 4. The beam is made of a
fiber-reinforced composite laminate with a rectangular cross section, as
shown in Fig. 3. The length of the beam is L=0.5m, its width is
b=0.02m, and the thickness of each lamina is ts=0.002m. The beam
is analyzed for different cases of loadings using the developed Matlab
code for the proposed method as well as using ANSYS and Nastran finite
element packages.

To find the solution that best balances computational capacity and
accuracy, convergence study has been performed for Nastran, ANSYS
and the proposed method for the cantilever beam model. The con-
vergence study on Nastran and ANSYS began with 22 2D square shell
elements and 40 3D solid cube elements along x1 direction respectively.
The mesh density has been increased until convergence was reached
with 225 2D shell elements along x1 direction for Nastran model, 234
3D solid elements along x1 direction for ANSYS model and 30 1D beam
element along x1 direction for the developed Matlab code. Total
number of 2D elements in Nastran is 2030 corresponding to 2263
nodes, total number of 3D solid elements in ANSYS is 2361 corre-
sponding to 2576 nodes and total number of 1D elements in Matlab is
30 corresponding to 31 nodes.

The results of the different applied mechanical and hygrothermal
loads on beams made of a laminated fiber-reinforced composite with a
rectangular cross section as shown in Fig. 4 are presented in Figs. 5–10
using the proposed method, Nastran and ANSYS. Specifically, Fig. 5

Fig. 10. Deformation of the laminated composite canti-
lever beam for the case of P3=−1000 N, ΔT=300 K
(Laminate 1 cross section): (left) ANSYS and (right) Present
model.

Fig. 11. L-shaped structure subjected to forces and moments.

Fig. 12. Laminated composite L-shaped structure: (left) u1= u2 displacements vs P1= P2 tip forces, (middle) u1 displacement vs P1 tip force, (right) u1= u2 vs ΔT with constant tip forces
P1= P2= 20,000 N (Laminate 2).
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shows u2 and u6 (rotation about x3 axis) at the beam tip for increasing
values of applied force P2. Applying force P3 at the tip of the composite
beam, Fig. 6 shows u3 and u1 at the beam tip with Laminates 1 and 2
rectangular cross sections, while Fig. 7 shows u3 and u5 (rotation about
x2 axis) with Laminates 5 and 6 for increasing values of P3. Fig. 8 shows
the effect of temperature on u1 with constant P1=10,000 N applied

force. Excellent agreement with Nastran and ANSYS can be seen in all
cases. The maximum error percent is less than 5% in all cases. Fig. 9
shows the deformation of Nastran model and the proposed method with
Laminate 1 cross section for the case of P2= 16,000 N, ΔT=300 K. For
this specific case, Nastran takes 26minutes and 5 seconds to find the
solution, while the developed Matlab code takes only 1minute and

Fig. 13. Deformation of the laminated composite L-shaped structure with Laminate 1 cross section: (left) P1= P2= 5,120,000 N Nastran and (middle) Present model, (right)
P3=−10,000 N.

Fig. 14. (left) u3 displacement, (right) u5 rotation vs. P3
tip force on the laminated composite L-shaped struc-
ture.

Fig. 15. 3D composite frame structure subjected to forces and moments in different directions (left) on a single point, (right) on two points.

Fig. 16. (left) u3 displacement vs P3 force, (right) u4 ro-
tation vs M1 moment on the mid point of the upper
middle member of the laminated composite 3D frame.
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39 seconds to solve the problem. This is 6.3% the time required by
Nastran. Fig. 10 shows the deformation of ANSYS model and the pro-
posed method with Laminate 1 rectangular cross section for the case of
P3=−1000 N, ΔT=300 K. For this specific case, ANSYS takes
3minutes and 37 seconds to find the solution, while the developed
Matlab code takes only 44 seconds to solve the problem. This is 20.2%
the time required by ANSYS.

5.2. Large deformation analysis of simply supported L-shape structure

In this example, an L-shaped structure is subjected to forces P1, P2,
P3 and moments M1, M2, M3 at the illustrated point in Fig. 11 as well as
changes in temperature and moisture content on the whole structure.
This structure has two equal side lengths L1= L2=0.25m, and has two
fixed points at its two ends. Each side of this structure is a laminated
composite beam with a rectangular cross-section of width b=0.02m.
The element size of both Matlab code and Nastran models are equal to
the element size of the cantilever beam example. Accordingly, in this
example, 30 1D beam elements (31 nodes) are used to model the
structure using the developed method, while 2029 2D elements (216 2D
shell elements along x1 direction) corresponding to 6573 nodes are used
to model the L-shaped structure in SolidWorks with Nastran-in-CAD
tool.

The displacement of the load-application point in the laminated
composite L-shaped structure made of two different composite lami-
nates for the different applied mechanical and hygrothermal loads are
presented in Fig. 12 for the present method and Nastran. Excellent
agreement can be seen in all cases. Fig. 13 (left and middle) show the
deformation of both Matlab code and Nastran models with Laminate 1
cross section for the case of P1= P2= 5,120,000 N. Fig. 14 shows the
u3 displacement of the load-application point when P3 force is applied.
As was mentioned earlier, Nastran (2016) provides unrealistic large
deformations when the load is applied perpendicular to the plane of the

laminate. Fig. 13 (right) shows the deformation of the same structure
with P3=−10,000 N applied using the developed Matlab code.

5.3. Large deformation analysis of a composite 3D frame

In this example, a 3D frame structure, shown in Fig. 15, is subjected
to forces P1, P2, P3 and moments M1, M2, M3 at the illustrated points in
the figure (center point, or two end points of the upper middle member)
as well as changes in temperature and moisture content on the whole
structure. All sides have equal lengths L1= L2=L3= L4=0.25m, and
four points are fixed as shown. Each member of the frame is a com-
posite beam with any of the cross-sections illustrated in Fig. 3, and
width b=0.02m. Four beam elements are used for each member,
hence 96 beam elements (84 nodes) are used to model the 3D frame.
The displacement of the load-application point of the laminated com-
posite 3D frame in Fig. 15 (left) made of the two different composite
laminates for applied P3 and M1 are presented in Fig. 16. Nastran tool
will never yield answers for loads applied normal to the plane of the
laminate. Hence, this problem cannot be solved using Nastran. Fig. 17
(left) shows the deformation of the laminated composite 3D frame
structure with Laminate 3 cross section for the case of P3=−10,000 N.

The displacement and rotation of the center point of the upper
middle member of the laminated composite 3D frame structure made
laminates 3 and 4 for applied P3.1= P3.2 and M1.1=M1.2 loads at the
two ends of the upper middle member are presented in Fig. 18. Fig. 17
(right) shows the deformation for the case of P3.1= P3.2= 1,600,000 N.

6. Conclusions

Combining Von Kármán’s nonlinear theory with the composite la-
mination theory, and using a co-rotational element reference frame as
the Updated Lagrangian formulation, an explicit expression of the
tangent stiffness matrix of laminated composite beam element

Fig. 17. Deformation of the laminated composite
3D frame structure subjected to (left) force
P3=−10,000 N on the mid point of the upper
middle member, (right) forces P3.1= P3.2
= 1,600,000 N at the two ends of the upper middle
member (Laminate 3 cross section).

Fig. 18. (left) u3 displacement, (middle) u5 rotation vs P3.1= P3.2, (left) u5 vs M1.1=M1.2 (with constant forces P3.1= P3.2= 400,000 N) applied on the two ends of the upper middle
member of the laminated composite 3D frame.
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undergoing large deformation and rotation has been obtained and uti-
lized in analyzing different structures subjected to multiple mechanical
and hygrothermal loads. The proposed approach has been verified by
comparison with the results of Nastran and ANSYS finite element tools
that enable modeling laminated composites, and the differences in the
resulting displacements and rotations are less than 5% in all examples
and cases. The developed beam element is much more efficient than
using composite laminate tools in FEA software because of the ability to
model such composites using 1D beam elements rather than 2D plate/
shell or 3D solid elements. With structures undergoing large deforma-
tions, the computational time is less than 7% the time needed for sol-
ving the problem using Nastran shell elements and less than 21% using
ANSYS 3D solid elements. The developed model will be very useful in
modeling and designing flexible composites which have a lot of new
applications, such as morphing aerospace structures and flexible robots.

Acknowledgment

The authors acknowledge the support of California State University,
Northridge.

References

[1] Webber KG, Hopkinson DP, Lynch CS. Application of a classical lamination theory
model to the design of piezoelectric composite unimorph actuators. J Intell Mater
Syst Struct 2006;17(1):29–34.

[2] Khdeir AA, Aldraihem OJ. Exact analysis for static response of cross ply laminated
smart shells. Compos Struct 2011;94(1):92–101.

[3] Khdeir AA, Aldraihem OJ. Analytical investigation of laminated arches with ex-
tension and shear piezoelectric actuators. Eur J Mech A Solids 2013;37:185–92.

[4] Han M-W, Rodrigue H, Kim H-I, Song S-H, Ahn S-H. Shape memory alloy/glass fiber
woven composite for soft morphing winglets of unmanned aerial vehicles. Compos
Struct 2016;140:202–12.

[5] Ahn S-H, Lee K-T, Kim H-J, Wu R, Kim J-S, Song S-H. Smart soft composite: an
integrated 3D soft morphing structure using bend-twist coupling of anisotropic
materials. Int J Precis Eng Manuf 2012;13(4):631–4.

[6] Wu R, Han M-W, Lee G-Y, Ahn S-H. Woven type smart soft composite beam with in-
plane shape retention. Smart Mater Struct 2013;22(12):125007.

[7] Rodrigue H, Wang W, Bhandari B, Han M-W, Ahn S-H. Cross-shaped twisting
structure using SMA-based smart soft composite. Int J Precis Eng Manuf-GT
2014;1(2):153–6.

[8] Kim H-J, Song S-H, Ahn S-H. A turtle-like swimming robot using a smart soft
composite (SSC) structure. Smart Mater Struct 2013;22(1):014007.

[9] Han M-W, Rodrigue H, Cho S, Song S-H, Wang W, Chu W-S. Woven type smart soft
composite for soft morphing car spoiler. 2016;86:285–98.

[10] Gordaninejad FF, Azhdari AA, Chalhoub NG. Nonlinear dynamic modelling of a

revolute-prismatic flexible composite-material robot arm. ASME J Vib Acoust
1991;113(4):461–8.

[11] Grossard M, Chaillet N, Regnier S, editors. Flexible robotics: applications to mul-
tiscale manipulations. Wiley-ISTE; 2013. ISBN: 978-1-84821-520-7.

[12] Mororó LAT, de Melo AMC, Junior EP. Geometrically nonlinear analysis of thin-
walled laminated composite beams. Latin Am J Solids Struct 2015;12:2094–117.

[13] Bhaskar K, Librescu L. A geometrically non-linear theory for laminated anisotropic
thin-walled beams. Int J Eng Sci 1995;33(9):1331–44.

[14] Librescu L, Song O. Thin-walled composite beams: theory and application (solid
mechanics and its applications). 1st ed. Springer; 2006.

[15] Omidvar B, Ghorbanpoor A. Nonlinear FE solution for thin-walled open-section
composite beams. J Struct Eng 1996;122(11):1369–78.

[16] Cardoso JB, Benedito NM, Valido AJ. Finite element analysis of thin-walled com-
posite laminated beams with geometrically nonlinear behavior including warping
deformation. Thin-Walled Struct 2009;47(11):1363–72.

[17] Vo TP, Lee J. Geometrically nonlinear analysis of thin-walled open-section com-
posite beams. Comput Struct 2010;88:347–56.

[18] Vo TP, Lee J. Geometrical nonlinear analysis of thin-walled composite beams using
finite element method based on first order shear deformation theory. Arch Appl
Mech 2011;81:419–35.

[19] Saravia CM. A large deformation–small strain formulation for the mechanics of
geometrically exact thin-walled composite beams. Thin-Walled Structures
2014;84:443–51.

[20] Turkalj G, Lanc D, Brnic J, Pesic I. A beam formulation for large displacement
analysis of composite frames with semi-rigid connections. Compos Struct
2015;134:237–46.

[21] Atluri SN. On some new general and complementary energy theorems for the rate
problems in finite strain, classical elastoplasticity. J Struct Mech 1980;8(1):61–92.

[22] Atluri SN. Alternate stress and conjugate strain measures, and mixed variational
formulations involving rigid rotations, for computational analyses of finitely de-
formed plates and shells: part-I: theory. Comput Struct 1984;18(1):93–116.

[23] Atluri SN, Cazzani A. Rotations in computational solid mechanics, invited feature
article. Arch Comput Methods Eng, ICNME, Barcelona, Spain 1994;2(1):49–138.

[24] Atluri SN, Iura M, Vasudevan S. A consistent theory of finite stretches and finite
rotations, in space-curved beams of arbitrary cross-section. Comput Mech
2001;27:271–81.

[25] Kondoh K, Tanaka K, Atluri SN. An explicit expression for the tangent-stiffness of a
finitely deformed 3-D beam and its use in the analysis of space frames. Comput
Struct 1986;24:253–71.

[26] Kondoh K, Atluri SN. Large-deformation, elasto-plastic analysis of frames under
nonconservative loading, using explicitly derived tangent stiffnesses based on as-
sumed stresses. Comput Mech 1987;2:1–25.

[27] Shi G, Atluri SN. Elasto-plastic large deformation analysis of spaceframes: a plastic-
hinge and stress-based explicit derivation of tangent stiffnesses. Int J Numer Meth
Eng 1988;26:589–615.

[28] Cai Y, Paik JK, Atluri SN. Large deformation analyses of space-frame structures,
with members of arbitrary cross-section, using explicit tangent stiffness matrices,
based on a Von Kármán type nonlinear theory in rotated reference frames. CMES
2009;53(2):117–45.

[29] Jones RM. Mechanics of composite materials. 2nd ed. Taylor and Francis; 1999.
[30] Bhati MA. Fundamental finite element analysis and applications: with mathematica

and matlab computations. Wiley; 2005.

A.R. Sofi et al. Composite Structures 187 (2018) 566–578

578

http://refhub.elsevier.com/S0263-8223(17)32655-7/h0005
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0005
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0005
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0010
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0010
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0015
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0015
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0020
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0020
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0020
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0025
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0025
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0025
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0030
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0030
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0035
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0035
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0035
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0040
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0040
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0045
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0045
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0050
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0050
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0050
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0055
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0055
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0060
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0060
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0065
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0065
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0070
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0070
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0075
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0075
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0080
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0080
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0080
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0085
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0085
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0090
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0090
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0090
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0095
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0095
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0095
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0100
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0100
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0100
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0105
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0105
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0110
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0110
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0110
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0120
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0120
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0120
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0125
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0125
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0125
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0130
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0130
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0130
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0135
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0135
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0135
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0140
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0140
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0140
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0140
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0145
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0150
http://refhub.elsevier.com/S0263-8223(17)32655-7/h0150

	Explicit tangent stiffness matrix for the geometrically nonlinear analysis of laminated composite frame structures
	Introduction
	Transformation between the global and the deformation-dependent co-rotational local frames of reference
	Von Kármán nonlinear theory for a beam with large deformation
	Strain-displacement relations
	Stress-strain relations
	Hygrothermal effects

	Updated Lagrangian formulation in the co-rotational reference frame
	Interpolation functions
	Weak formulation of the beam element in the co-rotational reference frame
	Explicit expressions for the tangent stiffness matrix

	Numerical examples
	Large deformation analysis of a cantilever laminated composite beam
	Large deformation analysis of simply supported L-shape structure
	Large deformation analysis of a composite 3D frame

	Conclusions
	Acknowledgment
	References




