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The meshless local integral equation method is developed to analyze general two-dimensional boundary
value problems in size-dependent magnetoelectroelastic solids. A consistent theory is developed for size
dependent magnetoelectroelasticity. The strain gradients are considered in the constitutive equations for
electric displacement and magnetic induction. The governing equations are derived with the correspond-
ing boundary conditions using the variational principle. The local integral equations are subsequently
derived and the meshless moving least square (MLS) numerical method is implemented to solve these

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Modern smart structures made of piezoelectric and piezomag-
netic materials offer certain potential performance advantages
over conventional ones due to their capability of converting
energy from one type to another, among magnetic, electric, and
mechanical [1,2]. It is well known that some composite materials
can provide superior properties compared to their virgin
monolithic constituent materials [3]. The irregularity in the spatial
arrangement of the fibers and their geometry can influence the
estimation of the effective material properties of the unidirectional
composite. The experimental approaches are not convenient
for an optimal design of composites due to the expensive cost
of the measurements and the low efficiency. Therefore,
mathematical and numerical models are frequently utilized to
get homogenized material properties directly from those of the
constituents and from their microstructure. Then, these material
properties are used for numerical analyses at macroscopic scale.
However, sometimes such analyses are not accurate enough,
especially if the size of the structure is comparable to the material
length scale.
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Due to their superior physical, electrical, optical, chemical and
other properties, the nano/micro structures were expanded into
many areas such as nano-electromechanical devices [4], space
and bio-engineering [5], actuators [6], and nanocomposites [7,8].
The validity of using the classical continuum mechanics for micro/
nano structures is inconclusive. Experimental as well as discrete
atomistic methods such as molecular dynamics (MD) simulations
[9,10] have been utilized in understanding and analysing the beha-
viour of nano/micro structures. However, these methods are highly
expensive and not applicable to real sized structures due to the
extremely high computer hardware requirements. Fortunately,
the continuum theory can be applied for these structures after
proper improvements or enhancements [11]. Recent experiments
have demonstrated that when the dimensions of the structure
are of the same order of the material length scale, the stiffness of
the structure increases. Size-dependent behaviour has been
observed in many studies [12-15]. This phenomenon can be
explained by the presence of significant strain gradients which
appear because of the small size of the microstructural elements.
Thus, the behaviour of the mesoscopic structural elements could
be described by the continuum theory enriched by incorporation
of strain gradients. Then, a consistent size-dependent continuum
mechanics theory can be a more efficient alternative to the atomis-
tic models.

Magnetoelectroelastic (MEE) composites are made of piezoelec-
tric and magnetostrictive phases coupled by a strain field. From
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earlier investigation for macro-sized layered MEE, it is well-known
that effective composite coefficients are higher than their con-
stituents [16]. A similar enhancement of effective coefficients has
been observed for fiber composites. Kuo and Wang [17] optimized
the effective magnetoelectric (ME) voltage coefficient of fibrous
composites made of piezoelectric and piezomagnetic phases.
They showed that at an optimal orientation of fibers, the effective
in-plane and out-of-plane ME coefficient can be enhanced
many-fold. Wang and Pan [18] investigated the influence of imper-
fect matrix-fiber bond on the ME coefficient under longitudinal
shear.

The influence of strain gradients in the gradient theory on the
effective material properties of MEE composites, if coated piezo-
electric fiber is embedded into the piezomagnetic matrix, is inves-
tigated in the present paper. This problem was analyzed before
using the classical elasticity theory. Kuo [19] and Kuo and Pan
[20] analyzed fibrous composites with piezoelectric and piezomag-
netic phases only under anti-plane shear deformation, whereas
Sladek et al. [21] analyzed the same composites under in-plane
deformation. Ebrahimi and Dabbagh [22] also studied the flexural
wave propagation responses of smart FG MEE nanoplates via non-
local strain gradient theory. If the thickness of the coating layer is
very small, the strain gradients should be included into the magne-
toelectroelasticity mathematical model. The governing equations
for magnetoelectroelastic solids in gradient elasticity with the cor-
responding boundary conditions are derived from the variational
principle in the present paper.

Meshless methods are becoming very popular in numerical
analyses of engineering problems. A variety of meshless methods
has been proposed so far. They can be derived either from a
weak- or strong-form. The weak formulation can be performed
on the global domain or a set of local subdomains. Background
cells are required in the global weak formulation to perform
numerical integration. However, no background cells are required
in the local weak formulation. The moving least squares (MLS)
approximation is often used for approximating the trial functions.

It yields C' continuity counterpart to conventional discretization
methods, where discontinuity of secondary fields at the interfaces
of elements occurs. Meshless methods have been also applied to
piezoelectric problems [23,24]. Many meshless formulations can
be defined on the base of the meshless local Petrov-Galerkin
(MLPG) method, since trial and test functions can be chosen from
different functional spaces [25-27]. The test functions in the MLPG
method can be arbitrary. The formulation with a Heaviside step
function as the test functions [28,29] leads to a simple form and
it has been applied successfully to various boundary value prob-
lems [30-34].

In the present paper, the MLPG method, with the gradient the-
ory, is applied to 2-D problems of magnetoelectroelasticity. The
corresponding governing equations are satisfied in a weak form
on small fictitious subdomains. Nodal points are randomly dis-
tributed over the analyzed domain. Each node is surrounded by
a small circle for simplicity, but without loss of shape generality.
Numerical integration over circles can be easily carried out. The
local integral equations have a very simple nonsingular form.
The MLS scheme is used for spatial approximations of the displace-
ments, the electric and magnetic potentials [35]. Performing the
spatial integrations, a system of linear algebraic equations for
the unknown nodal values is obtained. The proposed computa-
tional method is applied to evaluation of effective material proper-
ties of a piezomagnetic matrix with regularly distributed
piezoelectric fibers with a nano-sized coating layer. The influence
of the coating layer on the effective MEE coefficients is
investigated.

2. Basic equations for electric- and magnetic-strain gradient
theory

The electric field-strain gradient theory for nano-dielectrics
introduced by Hu and Shen [36] is extended here for a nano-
magnetoelectroelastic material. The strain gradients exist only in
the higher order stress, electric displacement and magnetic induc-
tion fields. Then, the constitutive equations are given by

Tij = Cija ) — exiEie — QigiHie,

Tt = —fijaEi — NigtHi + iimniMonnis

Dy = ewijyy; + &uEi + oaHi + fiamnMimns
By = Qyyyyi + Er + WygHi + Ramn i »

where Ciu, €y, Qij> €1, %, Ly and f,jkh i, Zjramni are the material
property tensors. Particularly, &g, f, Cji are the second-order per-
mittivity, permeability and the fourth-order elasticity constant ten-
sors, respectively. Symbol e,; denotes the piezoelectric coefficient,
qy; 1s the piezomagnetic coefficient, &y is the electromagnetic coef-
ficient. The electric field-strain gradient coupling coefficient tensor
fiju Tepresents the higher-order electromechanical coupling induced
by the strain gradient, and h;;, is the magnetic field-strain gradient
coupling coefficient tensor. The higher-order elastic parameters
Zjumni Tepresent the purely the strain gradient elasticity theory.
Symbols T and D; denote the higher-order stress tensor and elec-
tric displacement vector, respectively. A subscript preceded by a
comma denotes differentiation with respect to the corresponding
Cartesian coordinate. The Eistein summation is employed for
repeated lowercase indices.

The strain tensor y;, the electric field vector E; and the magnetic
field vector H, are related to the displacements u;, the electric
potential ¢ and the magnetic potential v, respectively by

1
Vi = i(u,:j +Ui), Ej=—¢; Hi=-y, @

The strain gradient tensor [37] is defined as

(M

1
Mk = Vijk = 3 (Uiji + Uj k) 3)
with exhibiting the symmetry y; = 7;;, % = js- The constitutive
equations (1) for orthotropic material can be written in a matrix form:

o1 i 63 O Y11 0 e3
E;
o3| =|6c3 ¢33 O Y3 | —| 0 es3 { ]
E;
013 0 0 cCug 2')/13 €15
0 g5
1
-1 0 g
3
gis O
or 6=Cy—LE-MH (4)
D, 0 0 €15 at e O E, o7 O H,
= Va3 | F +
Ds e3 e 0 A 0 é33]|Es 0 os3]|H3
2y15
Mn
331
+m2|:0 0 €15 0 0 615:| 27]131
e31 €33 0 e33 e33 0 N113
333
21133
or D=L"y+JE+AH + m?Fy, (5)
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PR PP o K B | A
3 1 Gz O 2 0 as]lEs 0 gy
Y13
M
N331
o |:H1:| +m2{ 0 0 g5 0 O ‘hs} 2013
Hs 1 9 0 g g3 O M3
333
21133
or B=M"y +AE + IH + m*0y, (6)
Ti11 0 en 0 g
T331 0 e 0 gs
Tist| _ o€ 0 |:EI:|7m2 g5 0 |:H1:|
T113 0 es|lEs 0 g5 |LH;
T333 0 e 0 g3
T133 e;s 0 gis O
m a3 0 0 0 O M
C13 C33 0 0 0 0 7’]331
P 0 0 cua O O O ||2n5
0 0 O ¢1 ¢c3 O Ni13
0 0 0 C13 C33 0 7]333
0 0 0 0 O caall2n5

(7)

or t=-m?FFE—m20"H + Gy

where gradient theory parameters g, are proportional to elastic
parameters Cy,, by the internal length material parameter [ [38].
Similarly, the electric field-strain gradient and magnetic field-
strain gradient coupling coefficient f;, and hy, are expressed by
piezoelectric and piezomagnetic coefficients, respectively, and a
scaling parameter m.

Consider a piezoelectric solid in domain V with boundary I'. The
variation of the electric Gibbs free energy in gradient theory of
magnetoelectroelastic solids is given by

oU = /V(Jijésij + TijdNij + Dkddp g + Hyoy)dv. (8)

Applying the Gauss divergence theorem, one gets

oU = /l(cijéu,;j + TijOUijk + Doy, + Hidp ) dV
= — /V(a,j_jéu,» + TijkkOUij + D kdp + Hy 1 d)dV
+ /r(njaijéui + M TiedUij + MDedp + ngHi oy )dI
_ /v (G4 — Ty + Digedd + HigedydV
+ /r[nj(aij — Tijkk)OU; + My TijdUij + M Dydp + nH oy ]dl

= — /[(GUJ — 'E,‘jk‘,‘k)éui + Dk.k(s(b + Hkvk&//}dv
JV

+ /r[t,-éui + Rids; + Qo¢p + Soydr, 9)
where the traction vector is defined as
ti = nj(0 — Tijw) — +ZHP )o(x —x°) (10
with p; :== mTij (11)

and ||p;(x9)|| := p;(x° + 0) — p;(x® — 0) is the jump at a corner on the
oriented boundary contour I'. Symbol 7; is the Cartesian component

of the unit tangent vector on T, s;:= 5‘1‘;, Ri := mn Ty, Q := myDy,

S := nyH,.
In derivation of 6U, the following identity is invoked:
. 00U, ou;
leT,‘jkbuU =P 01’51 +R(3<an> (12)

The primary fields (u;, si, ¢, ) are energetically conjugated
with (t;, R, Q,S). The work of the external generalized forces
(& Ri, Q,5) is given by
oW = [ tiowdl + | RiosidT + [ Qopdl + [ SoydI’ (13)

JIe JTg JTqy JTs

From the principle of virtual work éU — éW = 0, the following

governing equations are obtained from Eqs. (9) and (13),

03jj(X) — Tijjk(X) =0, Dyr(X) =0, Hir(X) =0, (14)
and two kinds of boundary conditions (b.c.) are:
ui(x) =u;(x) onl'y, I'ycI'
. si(x) =S5i(x) onI's, TIscT
Essential b.c. : - 15
$(X) = $(x) onl,, T, T 1>
¥(X)=y(x)onl,, T,cT

Natural b.c. : t;(x) = t;(x) onT’,
Ri(X) = R;(x) onTp,
Q(x) =Q(x)onTy,
S(x) = S(x) onT,

r,uly=r, Iinly=g
Iruls =T, TRul,=yg
[oul, =T, Toul,=¢g
I'sull, =T, Isul'y =&
(16)

3. The meshless local integral equation method

The MLPG method is the local weak-form with local fictitious
subdomains Q. It is a small region constructed for each node
inside the global domain [27,35]. The shape of local subdomains
could be of any geometry and size. In the present paper, the local
subdomains are circular for numerical simplicity. The local weak-
form of the first governing equation (14) can be written as

[ 163500 = 0] w500 d2 = 0 (17)
where uj(X) is a test function.

Applying the Gauss divergence theorem to the weak-form (17)
one obtains

/ [03(%) — Ty (R ()1 ()T / [03(X) — Ty (K], (X)dQ = O,
J Qs Q
(18)

where 9Q; is the boundary of the local subdomain. It consists of
three parts 9Q; = L, UT's; UTs, [35], where L is the local boundary
that is totally inside the global domain, I is the part of the local
boundary which coincides with the global boundary with prescribed
tractions, i.e., I'sy = 9Qs N Iy, and similarly Iy, is the part of the local
boundary with prescribed displacements, i.e., 'y, = 0Qs N T,.

If a Heaviside step function is chosen as the test function u;, (x)
in each subdomain as

i (X) = {5,,( at xe Q;
Y710 at x¢Qq
the local weak-form (18) is transformed into the following local
boundary-domain integral equations

| nios— wadr + pxd — p) = - [ e (20)
Li+Tsy Tse

(19)
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where definition of the traction vector (10) is utilized and x/, x5
stand for the final and starting points on I'.

Similarly, the local weak-form of the second governing equation
(14) can be written as

Dyx(X) v (X) dQ = 0, (21)

Qs

where v*(X) is a test function.

Applying the Gauss divergence theorem to Eq. (21) and choos-
ing the Heaviside step function as the test function »*(X) one can
obtain

/ Q)dr = - [ Qdr, (22)
Ls+Tgy o
where

Q%) = De(x)ni (x) = = Oty 1(X) +f gmn o (%) 1.

(23)

The local integral equation corresponding to the third governing
equation (14) has the form

/ S(x)dl" = — / S(x)dT, (24)
Ls+Ty I'ss

where magnetic flux is given by

S(X) =By (x)nk (X) = [qkijuij (X) - O‘klfp.l(X) - ,u,(,l//_,(x) + hklmnul.mn (X)} n;.
(25)

In the MLPG method the test and the trial functions can be from
different functional spaces. The MLS approximation is used for
approximation of trial functions. A number of nodes is spread over
the domain of influence. The approximated functions for primary
fields (mechanical displacements, electric and magnetic potentials)
are given by [33]

u'(x) =N'(x) -1 = iN“ xua’, ¢"(x) = Xn:N“(x)qs
a=1 a=1

= SNy (26)
a=1

where the nodal values @® = (i1¢, @%)", ¢* and y* are fictitious
parameters for displacements, electric and magnetic potentials,
respectively, and N(x) is the shape function related to the node a.
The number of nodes n used for the approximation is determined
by the weight function w?(x). The forth-order spline-type weight
function is applied in the present work

Wa(x): {1 76(?_‘?)24»8(?_:)373(?_2)47 Ogdaér“ 27)

0, d"=>r

[eijltij(X) — &, (X)

where d* = ||x — x| and r° is the size of the support domain. This
weight function has the C'— continuity over the entire domain,
and therefore the continuity conditions of tractions, electric charge
and magnetic flux are satisfied.

The traction vector t;(X) at a boundary point X € 9Q; can be
easily approximated in terms of primary fields as

CZB“ x)u® + N(x LZP” X)$® + N(x MZP“
=
- mZN(x)LZP‘; (X)$" — mzN(x)LZPg (X)¢°
= =
- mZN(x)MZn]:P‘{ 9% mZN(x)Mzn]:Pg (x)y*
+ lZN(x)CXn;B‘l’ (x)u® + lzN(x)czn;Bg (x)u’, (28)

where the matrices C, L, and M are defined in Eq. (4), the matrix
N(x) is related to the normal vector n(x) on 9Q; by

n 0 n3]

2
0 ns m (9)

N(X) = {

and finally, the matrices B* and P® are represented by the gradi-
ents of the shape functions as

[Ny O Ny 0
B'x)=| 0 Nf]3v B, (x) = 0 Nf]311
NS NG N5 Niy
[Nz 0
B, x)=| 0 Ny
[ N335 Niss
P(x) = Nf‘} PMx)—[Nz“} P3a<x>—{N'am]. (30)
LN3 Ny, N335

Similarly, the normal component of the electric displacement
vector Q(xX) can be approximated by

Qx) =N, (x)LTiB“(x)ﬁ” -N; (x)jznjpﬂ (x)¢°
a=1

n
—-N;(x AZP“ X"+ m?Ny (X)L Bj (x)a’
a=1
+ m?N; (x)LTZBg (x)a, (31)
a=1
where the matrices L', J, and A are defined in Eq. (5) and
Ny, O Ny; O
Ni(x)=[m ns], Bjx)=| 0 N% |, Bix)=| 0 N
N?Bl Nflll Nfl33 Nfz13
(32)

The magnetic flux S(x) is approximated by

S'(x) =N, (x)MTEH:B“(x)u“ - x)Azn:P“ (X)p°
a=1
—Ny(x IZP" YV 4+ m2Ny ( )MTzn:Bg(x)ﬁﬂ
a=1
+m’N, (x)MTZB‘; (x)a?, (33)

with the matrices M" and I being defined in Eq. (6).

The essential boundary conditions are satisfied in the strong-
form at nodal points. One obtains the discretized form of these
boundary conditions from the approximation formula (26)

ZN” =u@) forge Iy, ip"(g)N1 ©u* =s() forge I
a=1
ZN”(C)?P” =¢) forge Ly, D N@QY =y forgeT,
a=1 a=1
(34)

Substituting the MLS-approximation (28), (31), (33) into the
local boundary-domain integral equations (20), (22) and (24), we
obtain the system of algebraic equations for unknown nodal
quantities
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S ( /L . NOCB (I ¢ /

Ls+Tse

PN(x)C(B¢ (x) + BS (x))dF) a

+y ( /L - N(x)LP*(x)dl" —

a=1 L+Tsq

m*N(X)L(P] (x) + P5(x))dl ) ¢

n

) ( /L L NOOMPdr -

a=1

NX)M(P* (x) + P <x>>dr) i

JLs+Tss

+ {11 )€ mi B (x]) + maB§ (x| 110, C [mi B x3) + maB§ (x3)] e

- /r t(x)dr,

(35)
e </Ls+rsq N LB AT+ [ N (LB T
i /Lr m*N (x)L'B3 <X>df> @ - fZ] ( / NP (x)dF> 3
_Z‘</Lr N: (0AP* (x)dr> V== ) Qo (36)
2o </Lr N; ()M'B" (x)dI + /L o NiOMTB(0dr
i /mrss N1 GOM' B ()T ) u’ - —GZ: ( /L o, AP (x)dr) ¢
_2 </Lr Ny (OIP T ) ¢ = - | Sodr, 7

which are considered on the sub-domains adjacent to the
interior nodes as well as to the boundary nodes on I'y, I's; and
I'ss and

I(x) =

I:TC1 0 73 . (38)

0 m m

4. Coated circular piezoelectric fiber in piezomagnetic matrix

The proposed computational method is applied for evaluating
the effective material parameters of a piezomagnetic matrix with
regularly distributed piezoelectric fibers of a circular cross sec-
tion. The fibers are coated by a general MEE material with thick-
ness h. The thickness of the cladding layer is considered so small
that it is necessary to apply the gradient theory to describe the
size effect. In idealized assessments of the effective elastic prop-
erties of unidirectionally reinforced composites, it is assumed that
the spatial arrangement of fibers is regular, which enables the
application of effective elasticity estimates that are usually devel-
oped by modelling the mechanics of a representative volume ele-
ment (RVE). Then, it is sufficient to consider only one fiber in the
square domain (a x a) as the RVE (Fig. 1). The polarization in our
numerical analyses is considered in the transverse direction, x;-
axis.

The effective material coefficients of MEE solids are computed
from the constitutive equations (4)-(6) rewritten for the average
values of the secondary fields and the average values of conjugated
fields. These fields are obtained from the numerical solution of
properly selected boundary value problems in the RVE sample.
Let us consider a rectangular RVE sample Q = {VX = (x1,X3);
X1 €0, a], x3 €0, a]}. The volume average stress, electric dis-
placement and magnetic induction are, respectively

1 1 1
(oy) =5 /Q oydQ;  (Di) = 5 /Q DidQ;  (By) =5 /Q BidQ. (39)

A X3
A
PM
h
a
X, X,
<l a A -

Fig. 1. Representative volume element (RVE) with piezomagnetic phase as matrix
and piezoelectric phase as embedded fiber with a nano-sized coating layer of
thickness h.

If a uniform strain along x; and vanishing electric and magnetic
potentials are considered as shown in Fig. 2, we get the following
average values of the secondary fields

(fn) =7 =const, (y33) =0, (yy3) =0, (E)=0, (H;))=0,
M) =0 (40)
Then, the effective material coefficients are given by
o o D B
¢ =) (0 g Do) g B )
Y11 bat! Y11 Y11

The following effective material coefficients can also be com-
puted as

e _1033) e _{0n1)

33 e = _<D3> )

= = o _ (B 42
?” ’ 13 ,)*)33 ’ 33 .7/33 33 ,)*)337 ( )

if we consider a uniform strain along x; and vanishing electric
and magnetic potentials

(111) =0, (y33) =733 =const, (y3) =0, (E)=0, (Hi)=0,
(M) =0 (43)

Similarly, one can select the average values of the secondary
fields

u,=X
aX; 1 Y

u3=O (1):() W:O
Y= y=0
$=0 $=0
u,=0 u|:a?11
u3=() u3=0
X,
u=0_¢=0 y=0 ]
U=X\Yy

Fig. 2. Boundary conditions appropriate for evaluation of ¢, ¢%, ¥, q%.
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(7110 =0, (7330 =0, (y13) =Pz =const, (E)=0, (Hi)=0,
(M) =0 (44)
to compute effective material coefficients

of _(013) g (D1) o5 (B1)
Co6 = 2913 €5 = 20 15725, (45)

If a uniform electric intensity field along x; and vanishing dis-
placements are considered, the average values of the secondary
fields are given as

(111) =0, (y33) =0, (py3) =0, (E)=Esdz =const, (H;))=0,
M) =0 (46)

Then, one can calculate the following effective material
coefficients

ef __(011) e (033)

el — _ = _ =2
31 » ©33 ) 933 )
E; E; E;

e — (D3) od :%?. (47)
Similarly, a uniform electric intensity field along x; and vanish-
ing displacements are considered

(1) =0, (733) =0, (y13) =0, (E)=Ei6n =const, (H))=0,

(M) =0 (48)
for evaluating the effective material coefficients

(s D € O- € B

R (49)

If the following boundary conditions are considered

(111) =0, (y33) =0, (p3)=0, (E)=0, (H;)=H;dy = const,
(M) =0 (50)
the effective material coefficients are computed as
o D B
af--e, LG (51)

Finally, if the average values of the secondary fields are consid-
ered as

(1) =0, (7330 =0, (130 =0, (E)=0, (H;)=Hs3 = const,
(M) =0 (52)
then, we can calculate the following effective material

coefficients

of _ _(On) e (03)
31 m,o 9@ 0

of _(D3) o _ (B3)
O‘3f§:H_37 3f§:H_3- (33)
where the volume average values of the conjugated fields (g11),
(033), (013), (D3), (Bs3) are calculated from Eq. (39), with the inte-

grands being obtained from the solution of the considered boundary
value problem.

5. Numerical examples

In the numerical examples, the RVE has a piezoelectric fiber
with circular cross section in the square domain (a x a). The fiber
is coated by the piezomagnetic material Terfenol-D. The matrix
material parameter is CoFe,04 whose properties are given in
[39]. The piezoelectric fiber is BaTiO3; with parameters

c11 =166 x10°°Nm™2, ¢33 =7.8x10""Nm™2,
€33 =162 x10"Nm2, cu=43x10""Nm32,

ers=11.6Cm™2, e3 =-44Cm™2, e =18.6Cm72,

e =112 x10° C?/Nm?, &35 = 12.6 x 107 C*/Nm?,

5 = 0.0N/Am, ¢;; =0.0N/Am, ¢;; =0.0N/Am,
011 = 0.0 Ns/VC, o33 = 0.0 Ns/VC,

Uy =50x10°Ns? C?,  py3 =10.0 x 10° Ns* C2.

The piezomagnetic material Terfenol-D has the following mate-
rial coefficients:

c11 = 0.854 x 10" Nm2,
€33 =2.83 x 10" Nm™2,

c13 = 0.391 x 10" Nm 2,
Cas = 0.555 x 10'° Nm 2,

e15=0.0Cm ™2, e3; =00Cm2, e3 =00Cm?2,

&1 =005 x107° C*/Nm?, &35 = 0.05 x 10°° C*/Nm?,

415 = 1555 N/Am, g5, = —5.75 N/Am, g5 = 270.1 N/Am,

o117 =0.0Ns/VC, o33 =0.0Ns/VC,

Uy =86 x10°Ns*C?,  p33 =23 x 10 °Ns* C 2.

The volume fraction of the fiber is introduced here as
f =mnr?/a?, with r = ro +h where rq is the radius of the circular
cross section of the fiber and h is the coating layer thickness. The
following geometrical dimensions have been considered in the
numerical model: h=1-10®manda=5-10"m.

The coating layer thickness is kept constant for all the consid-
ered volume fractions. Due to the symmetry of the problem with
respect to both Cartesian coordinates, only a quarter of the RVE
is modelled. We have used 300 nodes for the MLS approximation
of the physical quantities in the fiber and 2414 nodes in the matrix.
The quarter of the coating layer is approximated by 90 nodes. The
local subdomains are assumed circular.

Now, it is needed to ensure a jump of secondary fields on inter-

faces. It is well known that the C'— continuity is ensured over the
entire domain in the MLS approximation. Therefore the continuity
conditions of the tractions, electric displacement and magnetic
induction are satisfied on interfaces too. However, this highly con-
tinuous nature leads to difficulties when there is an imposed dis-
continuity in the secondary fields. To simulate jumps on
interfaces Krongauz and Belytschko [40] introduced a jump shape
function for 2-D problems. It is a trial function with a pre-imposed
discontinuity in the gradient of the function on interfaces. It is very
tedious to applied this approach for curvilinear interfaces. Cordes
and Moran [41] solved also 2-D problems using Lagrangian multi-
plier. The method requires a lot of computational effort for the dis-
continuity of a complex geometrical shape.

It is much simpler to apply double nodes approach for the mate-
rial discontinuity [42]. Two sets of collocation nodes are assigned
on both the +side and the —side of the material interface at the
same location (Fig. 3). The MLS approximations are carried out sep-
arately on particular sets of nodes related to the homogeneous
domains. Then, the support domains for the weights in the
weighted MLS approximations must be truncated at the interface
of the two media. Then, the high order continuity is kept within
each homogeneous part, but not across their interface. The local
subdomains considered around nodes should not cross the inter-
face too.

On the interface I';, we must enforce the continuity for the dis-
placements and potentials, as well as the equilibrium of tractions,
electric charge and magnetic flux by collocating the following

equations at double nodes x? € 9Q! N T, = I'¥:
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Fig. 3. Double nodes approach for material discontinuities.
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Fig. 4. Variation of effective elastic coefficients with volume fraction of the coated fiber.
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where n* and n- are the numbers of nodes lying in the support
domain in medium + and medium -, respectively. The normal vector

components in N(x%) is taken in the sense of outward normal to the
medium +.

It is seen from constitutive equations that strain-gradient piezo-
electric model can be reduced to the classical piezoelectric model if
the internal length material parameter, [, and scaling parameter, m,
appearing in Egs. (5)-(7) vanish. The classical piezoelectric model
has been analyzed in an earlier paper by the authors [21]. To assess
the size effect, we can introduce the strain-gradient size-factor, q,
as
P=q-B m*=q-m (60)
where my =2 x 10 m and Iy =2 x 107° m are fixed parameters
selected for the present model.

The numerical results for effective elastic material parameters
are presented in Fig. 4 for fiber volume fraction values in interval
from 0.05 to 0.3. All effective elastic coefficients decrease with
growing fiber volume fraction. One can also observe that the effec-
tive elastic coefficients increase with increasing strain gradient
parameter ¢, but saturate when g reaches 4. However, this
enhancement is not significant due to the small volume fraction
of the cladding layer on the whole composite content.

The variation of the effective piezoelectric coefficients with the
volume fraction of the coated fiber is presented in Fig. 5. The coef-
ficients e;s and es3 show an increase with growing fiber volume
fraction. It is interesting that the strain gradient produces an oppo-
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The effective dielectric permittivities, shown in Fig. 6, are
increasing as fiber volume fraction increases. One can also observe
that for fixed volume fraction, the effective dielectric permittivity
is nearly independent of the strain gradient.
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Fig. 7. Variation of effective piezomagnetic coefficients with volume fraction of the coated fiber.
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Fig. 8. Variation of effective magnetoelectric coefficients with volume fraction of the coated fiber.
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Fig. 9. Variation of effective magnetic permeabilities with volume fraction of the coated fiber.

Variation of the effective piezomagnetic coefficients with the
volume fraction of coated fiber is shown in Fig. 7. The effective
piezomagnetic coefficients are reduced as the volume fraction of
the fiber increases. The effect of strain gradients is insignificant
for all effective piezomagnetic coefficients.

Variation of the effective magnetoelectric coefficients with the
volume fraction of the coated fiber is shown in Fig. 8. The magni-
tude of these coefficients highly increases as the fiber volume frac-
tion increases. One can also observe a strong influence of the strain
gradient on the effective magnetoelectric coefficients. The effective
magnetoelectric coefficients are enhanced as compared to the clas-
sical models, particularly when q is large.

Finally, Fig. 9 shows the effect of fiber volume fraction on the
effective magnetic permeabilities. Both effective magnetic perme-
abilities decrease with increasing volume fraction of the coated
piezoelectric fiber. The influence of strain gradients on the effective
magnetic permeabilities is also very small.

6. Conclusions

A new formulation based on the meshless local Petrov-Galerkin
(MLPG) method is developed for the evaluation of the effective
material properties in MEE composite materials described by
the gradient theory. The strain-gradients are considered in the con-
stitutive equations. The composite is made of a piezomagnetic

matrix with embedded piezoelectric fibers with nano-sized coating
layer. The governing equations with the corresponding boundary
conditions are derived using the variational principle. The local
integral equations for the solution of 2D boundary value problems
of magnetoelectroelasticity are derived in the gradient theory.

It follows from the numerical analyses that the effective elastic,
piezoelectric, magnetoelectric coefficients and magnetic perme-
abilities are influenced significantly by the strain-gradient. While
the effective piezomagnetic coefficients and dielectric permeabili-
ties are influenced very weakly. The strongest influence of the clad-
ding layer is observed in the effective magnetoelectric (ME)
coefficients. The influence of the coating layer on the effective
ME coefficient is dominant although the ME coefficients for all
three composite constituents (fiber, matrix, coating) are zero. Thus,
our MLPG modeling results could open an opportunity for enhanc-
ing the ME coefficients in coated fiber composites for possible
promising future applications.

The strain-gradient theory should be employed if the dimen-
sions of the analyzed problem are of the same order of magnitude
as the internal material length. Numerical results illustrate that
size-effect phenomenon must be considered in such cases. The
MLPG method has been successfully applied to nano-MEE compos-
ites. The present local integral equation method requires no funda-
mental solutions and all integrands in the present formulation are
regular. Therefore, the method is promising for numerical analysis
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of general multi-field problems with more complex constitutive
equations even in the gradient theory.
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