
International Journal of Solids and Structures 96 (2016) 126–135 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Static and dynamic behavior of porous elastic materials based on 

micro-dilatation theory: A numerical study using the MLPG method 

J. Sladek 

a , ∗, V. Sladek 

a , M. Repka 

a , P.L. Bishay 

b 

a Institution of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia 
b College of Engineering and Computer Science, California State University, Northridge, CA, United States 

a r t i c l e i n f o 

Article history: 

Received 26 May 2015 

Revised 8 June 2016 

Available online 14 June 2016 

Keyword: 

Porous material 

Cowin-Nunziato model 

Local integral equations 

Moving least square method 

Micro-dilatation 

Stress intensity factor (SIF) 

a b s t r a c t 

A meshless local Petrov-Galerkin (MLPG) model of porous elastic materials based on micro-dilatation 

theory by Cowin and Nunziato (1983) is developed. . This theory describes properties of homogeneous 

elastic materials with voids free of fluid. The primal fields (mechanical displacements, and change in ma- 

trix volume fraction which is also called micro-dilatation) are coupled in the constitutive equations. The 

governing differential equations are satisfied in the weak form on small circular subdomains for 2D prob- 

lems. Only one node is lying at the center of each subdomain spread on the analyzed domain. A Heaviside 

step function is applied as test functions in the weak-form to derive local integral equations on subdo- 

mains. The spatial variation of the displacements and micro-dilatation are approximated by the moving 

least-squares (MLS) scheme. After performing the spatial integrations, a system of ordinary differential 

equations for certain nodal unknowns is obtained. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Recent advances in techniques for foaming metals and ceram-

ics have led to their intense study, extending the understanding of

such materials ( Ashby et al., 20 0 0; Colombo and Scheffler, 2005 ).

There are number of theories about mechanics of porous materi-

als. One of them is Biot consolidation theory for modeling fluid-

saturated porous solids ( Biot and Willis, 1957 ). Typically, these

theories reduce to classical elasticity when the pore fluid is ab-

sent, and Biot consolidation theory cannot be applied for materials

with voids free of fluid. Therefore, Cowin and Nunziato (1983) pro-

posed a new theory to describe properties of homogeneous elas-

tic materials with voids free of fluid. In that model, a certain vol-

ume fraction field of pores is introduced as an unknown function.

This new function of volumetric density significantly influences the

stress–strain state. The theory is founded on the balance of energy,

where the presence of pores involves additional degree of free-

dom. Cowin-Nunziato theory (also known as micro-dilatation the-

ory) has been successfully applied to many problems with special

geometries under particular boundary conditions (see, for exam-

ple, Adkin et al., 1977; Chandrasekharaiah, 1987; Scalia and Sum-

batyan, 20 0 0; Scalia, 20 02 ; and recently Ramézani et al., 2012;

Ramézani and Jeong, 2015 ) and showed good agreement with both
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xperimental data and physical conclusions. The theory can also

e utilized for modeling cracks in porous materials ( Ciarletta et al.,

003 ). The solution of general boundary value problems for solids

ith voids requires advanced numerical methods due to coupling

f mechanical displacements and the change in matrix volume

raction in the constitutive equations. 

In recent years, meshless methods have become very popular

omputational tools for solving many engineering problems. This

s due to their high adaptivity and low costs to prepare input and

utput data for numerical analyses. A meshless method can be ob-

ained from a weak-form formulation on either the global domain

r a set of local subdomains. In the global formulation, background

ells are required for the integration of the weak-form. In meth-

ds based on local weak-form formulation, no background cells are

equired and therefore they are often referred to as “truly mesh-

ess methods” . The meshless local Petrov-Galerkin (MLPG) method

s a fundamental base for the derivation of many meshless for-

ulations since the trial and test functions can be chosen from

ifferent functional spaces ( Atluri, 2004 ). The MLPG method with

 Heaviside step function as the test functions ( Atluri and Shen,

0 02; Atluri et al., 20 03 ) is the simplest and most reliable tech-

ique, which is frequently applied to solve two-dimensional (2-

) homogeneous and continuously non-homogeneous elastic solids

 Sladek et al., 20 04 , 20 08d , 20 09 ) and for 3-D problems in homo-

eneous and isotropic solids under static or dynamic loads ( Han

nd Atluri, 20 04a, 20 04b; Sladek et al., 20 09 ). The method has also

een successfully applied to coupled problems ( Sladek et al., 2007 ,

http://dx.doi.org/10.1016/j.ijsolstr.2016.06.016
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008c , 2014; Shirzadi et al., 2013 ), and plate/shell problems ( Sladek

t al., 2008a,b ) and review of the MLPG has been published re-

ently ( Sladek et al., 2013 ). 

In this paper, the MLPG method is applied to solving two-

imensional boundary value problems in porous elastic solid de-

cribed by the micro-dilatation (Cowin-Nunziato) theory. The nodal

oints are introduced and distributed over the analyzed domain,

ach of which is surrounded by a small circle for 2-D problems.

he weak-form on small subdomains with a Heaviside step func-

ion as the test functions is applied to derive local integral equa-

ions. The spatial variations of displacements and change in ma-

rix volume fraction are approximated by the moving least-squares

MLS) scheme. After performing the spatial integrations, a system

f ordinary differential equations for certain nodal unknowns is

btained. The backward finite difference method is applied to the

pproximation of the diffusive term of the change in matrix vol-

me fraction in the governing equation represented by the balance

f equilibrated forces. The system of ordinary differential equations

f second order resulting from the balance of momentum is solved

y the Houbolt finite-difference scheme as a time stepping method.

The rest of the paper is organized as follows; in Section 2 ,

he governing equations for elastic materials with voids are pre-

ented. The derivation of the local integral equations is detailed in

ection 3 . Section 4 introduces the numerical solutions based

n the moving least squares method. Some numerical examples

re provided in Section 5 and conclusions are summarized in

ection 6 . 

. Governing equations for elastic materials with voids 

The linear theory of elastic materials with voids deals with

mall changes from a reference configuration of a porous body.

he matrix volume fraction at the strain-free state is denoted as

0 . However, it does not mean that it has to correspond to a

tress-free state necessarily. The considered theory asserts that the

ass density ρ has the decomposition ( Cowin and Nunziato, 1983 ),

( x , τ ) = κ(x , τ ) γ , where γ is the density of the matrix material,

nd κ (0 < κ ≤ 1) is the matrix volume fraction field. The change

n volume fraction from the reference volume fraction (also known

s micro-dilatation or porosity change function), φ( x , τ ), is defined

s 

(x , τ ) = κ(x , τ ) − κ0 (x ) (1)

Then, the two independent kinematic variables in this linear

heory are the displacement field u i ( x , τ ) and the micro-dilatation

eld. The strain tensor ɛ ij ( x , τ ) is determined from displacements:

 i j = 

1 

2 

(u i, j + u j,i ) (2)

here i, j = 1,2,3 for the 3D case and 1,.2 for the 2D case. 

Governing equations for elastic medium with voids have to sat-

sfy the balance of momentum 

i j, j + ρb i = ρü i (3) 

nd the balance of equilibrated forces ( Cowin and Nunziato, 1983 )

 i,i + g + ρl = ρk ̈φ (4)

here σ ij is the symmetric stress tensor, b i is the body force vec-

or, h i is the equilibrated stress vector, k is the equilibrated inertia,

 is the intrinsic equilibrated body force, and l is the extrinsic equi-

ibrated body force. 

The constitutive equations for the linear isotropic theory of

lastic materials with voids relate the stress tensor σ ij , the equi-

ibrated stress vector h i and the intrinsic equilibrated body force

 to the strain ɛ ij , the change in volume fraction φ, the time rate
f change in volume fraction 

˙ φ, and the gradient of the change in

olume fraction ψ i = φ,i ( Cowin and Nunziato, 1983 ) as 

i j = 2 με i j + λδi j ε kk + βφδi j , (5)

 i = αψ i , (6) 

 = −ω 

˙ φ − ξφ − βε kk (7) 

here coefficients μ, λ, α, β , ξ and ω depend on the refer-

nce volume fraction κ0 . Coefficients α, β , ξ represent material pa-

ameters related to porosity of the medium. Obviously, if β = 0 ,

echanical displacements and micro-dilatation are independent

elds. 

For a unique solution of the considered coupled problem, the

nitial and boundary conditions should be specified. The following

ssential and natural boundary conditions are assumed for the me-

hanical fields 

 i (x , τ ) = 

˜ u i (x , τ ) on ∂ �u , 

 i (x , τ ) ≡ σi j n j = 

˜ t i (x , τ ) on ∂ �t , ∂� = ∂ �u ∪ ∂ �t , (8) 

nd the equilibrated stress vector boundary condition 

 i (x , τ ) n i (x ) = 0 on ∂� (9)

here n i is the unit normal vector to boundary ∂�. The boundary

ondition ( 8 ) follows from the work of Adkin et al. (1977) . This

atural boundary condition means that there is no discontinuity in

he surface flux of the quantity conserved in a direction normal to

n external boundary. 

. Local integral equations 

Consider an elastic body in a 2D domain �, with a boundary

�. In MLPG approaches, one may write a weak form over a local

ubdomain �s , which may have an arbitrary shape. The local weak

orm of the governing Eq. (3) can be written as ( Atluri, 2004 ) 
 

�s 

[ σi j, j (x , τ ) − ρü i (x , τ ) + ρb i (x , τ ) ] u 

∗
ik (x ) d� = 0 , (10) 

here u ∗
ik 
(x ) is a test function. 

By applying the divergence theorem to the first integral one

btains 
 

∂ �s 

σi j (x , τ ) n j (x ) u 

∗
ik (x ) d� −

∫ 
�s 

σi j (x , τ ) u 

∗
ik, j (x ) d�

+ 

∫ 
�s 

[ −ρü i (x , τ ) + ρb i (x , τ ) ] u 

∗
ik (x ) d� = 0 , (11) 

here ∂�s is the boundary of the local subdomain which consists

f three parts ∂ �s = L s ∪ �st ∪ �su ( Atluri, 2004 ). Here, L s is the lo-

al boundary that is totally inside the global domain, �st is the

art of the local boundary which coincides with the global trac-

ion boundary, i.e., �st = ∂ �s ∩ ∂ �t , and similarly �su is the part

f the local boundary that coincides with the global displacement

oundary, i.e., �su = ∂ �s ∩ ∂ �u . 

By choosing a Heaviside step function as the test function u ∗
ik 
(x )

n each subdomain 

u 

∗
ik (x ) = 

{
δik at x ∈ �s 

0 at x / ∈ ( �s ∪ ∂ �s ) 
, 

he local weak-form ( 11 ) is converted into the following local

oundary-domain integral equations 
 

L s + �su 

t i (x , τ ) d� −
∫ 
�s 

ρü i (x , τ ) d�

= −
∫ 
�st 

˜ t i (x , τ ) d� −
∫ 
�s 

ρb i (x , τ ) d�. (12) 

Eq. (12) is recognized as the overall force equilibrium conditions

n subdomain �s . The traction vector inside the integral sign can

e expressed by the constitutive Eq. (5) 
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 i (x , τ ) = σi j (x , τ ) n j (x ) = μ( n j (x ) u i, j (x , τ ) + n j (x ) u j,i (x , τ ) ) 

+ λn i (x ) u j, j (x , τ ) + βn i (x ) φ(x , τ ) . 

Similarly, the local weak-form of the governing Eq. (4) repre-

senting the balance of equilibrated forces is given by ∫ 
�s 

[ h i,i (x , τ ) − ω 

˙ φ(x , τ ) − ξφ(x , τ ) − βu i,i (x , τ ) 

+ ρl(x , τ ) − ρk ̈φ(x , τ )] v ∗(x ) d� = 0 , (13)

where v ∗(x ) is a test function. The definition of g in Eq. (7) was

used in the above equation. 

Applying Gauss divergence theorem to the local weak-form ( 13 )

and choosing the Heaviside step function as the test function v ∗(x ) ,

one can obtain ∫ 
∂ �s 

q (x , τ ) d� −
∫ 
�s 

[ ω 

˙ φ(x , τ ) + ξφ(x , τ ) + βu i,i (x , τ ) 

− ρl(x , τ ) + ρk ̈φ(x , τ )] , d� = 0 , (14)

where 

q (x , τ ) = h j (x , τ ) n j (x ) = αn j (x ) φ, j (x , τ ) . 

It should be noted that q on an artificial boundary ∂�s is not

vanishing. It vanishes only on the global boundary ∂� as it follows

from boundary condition ( 9 ). 

4. Moving least square approximation 

The MLS is generally considered to be one of the best mesh-

less schemes to approximate quantities with high accuracy, and the

desired completeness and continuity. A number of nodes spread

over the domain of influence are used for the approximation of a

field. The trial function u ( x , τ ) at any point x may be defined by

( Lancaster and Salkauskas, 1981; Nayroles et al., 1992 ; Atluri, 2004 )

u 

h (x , τ ) = 

m ∑ 

i =1 

p i (x ) a i (x , τ ) = p 

T (x ) a (x , τ ) , (15)

where p 

T (x ) = { p 1 (x ) , p 2 (x ) , . . . p m 

(x ) } is a vector of

complete basis functions of order m and a (x , τ ) =
{ a 1 (x , τ ) , a 2 (x , τ ) , . . . a m 

(x , τ ) } is a vector of unknown param-

eters that depend on x . For example, in 2-D problems 

p 

T (x ) = { 1 , x 1 , x 2 } for m = 3 

and 

p 

T (x ) = { 1 , x 1 , x 2 , x 
2 
1 , x 1 x 2 , x 

2 
2 } for m = 6 

are linear and quadratic basis functions, respectively. 

The vector of function a ( x , τ ) is determined by minimizing a

weighted discrete L 2 norm 

J [ a (x , τ ) ] = 

n ∑ 

a =1 

w 

a (x )[ p 

T ( x 

a ) a (x , τ ) − ˆ u 

a (τ ) ] 2 , (16)

where n is the number of nodes used for the approximation. It is

determined by the weight function w 

a ( x ) associated with the node

a . The symbol ˆ u a (τ ) stands for the fictitious nodal values, but not

the nodal values of the unknown trial functions in general. The sta-

tionarity of J in Eq. (16) with respect to a ( x , τ ) leads to the follow-

ing linear relation between a ( x , τ ) and ˆ u (τ ) = [ ̂  u 1 (τ ) , . . . , ̂  u n (τ ) ] T 

A (x ) a (x , τ ) − B (x ) ̂  u (τ ) = 0 , (17)

where 

A (x ) = 

n ∑ 

a =1 

w 

a (x ) p ( x 

a ) p 

T ( x 

a ) , 

B (x ) = [ w 

1 (x ) p ( x 

1 ) , w 

2 (x ) p ( x 

2 ) , . . . , w 

n (x ) p ( x 

n ) ] . (18)
The solution of Eq. (17) for a ( x , τ ) and the subsequent substitu-

ion into Eq. (15) gives the approximate formulas for the mechani-

al displacements, and micro-dilatation 

 

h (x , τ ) = N 

T (x ) · ˆ u = 

n ∑ 

a =1 

N 

a (x ) ̂  u 

a (τ ) , 

h (x , τ ) = 

n ∑ 

a =1 

N 

a (x ) ̂  φa (τ ) , (19)

here the nodal values ˆ u 

a (τ ) = ( ̂  u a 
1 
(τ ) , ˆ u a 

2 
(τ ) ) T and 

ˆ φa (τ ) are

ctitious parameters for displacements, and micro-dilatation, re-

pectively, and N 

a ( x ) is the shape function associated with node a .

he number of nodes n used for the approximation is determined

y the weight function w 

a ( x ). A 4th order spline-type weight func-

ion is applied in the present work 

 

a (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − 6 

(
d a 

r a 

)2 

+ 8 

(
d a 

r a 

)3 

− 3 

(
d a 

r a 

)4 

, 0 ≤ d a ≤ r a 

0 , d a ≥ r a 

, 

(20)

here d a = ‖ x − x a ‖ , and r a is the radius of the support domain.

t is seen that the C 1 -continuity is ensured over the entire domain,

nd therefore continuity conditions of tractions, and equilibrated

tress vector are satisfied. A necessary condition for a regular MLS

pproximation is that at least m weight functions are non-zero (i.e.

 ≥ m ) for each sample point x ∈ �. This condition determines

he size of the support domain. 

Then, the traction vector t i ( x , τ ) at a boundary point x ∈ ∂�s 

s approximated in terms of the same nodal values ˆ u 

a (τ ) as 

 

h (x , τ ) = O (x ) C 

n ∑ 

a =1 

B 

a (x ) ̂  u 

a (τ ) + βO 1 (x ) 
n ∑ 

a =1 

N 

a (x ) ̂  φa (τ ) , (21)

here the matrix O(x) is related to the normal vector n(x) on ∂�s 

y 

 (x ) = 

[
n 1 0 n 2 

0 n 2 n 1 

]
, C = 

[ 

2 μ + λ λ 0 

λ 2 μ + λ 0 

0 0 μ

] 

, 

 1 (x ) = 

[
n 1 

n 2 

]
, 

nd finally, the matrix B 

a is represented by the gradients of the

hape functions as 

 

a (x ) = 

⎡ 

⎢ ⎣ 

N 

a 
, 1 0 

0 N 

a 
, 2 

N 

a 
, 2 N 

a 
, 1 

⎤ 

⎥ ⎦ 

. 

The scalar product of the equilibrated stress vector q ( x , τ ) is

pproximated by 

 

h (x , τ ) = αn i 

n ∑ 

a =1 

N 

a 
,i (x ) ̂  φa (τ ) = αO 

T 
1 (x ) 

n ∑ 

a =1 

P 

a (x ) ̂  φa (τ ) , (22)

here 

 

a (x ) = [ N 

a 
, 1 N 

a 
, 2 ] 

T . 

Satisfying the essential boundary conditions and making use of

he approximation formulae ( 19 ), one obtains the discretized form

f these boundary conditions as 

n ∑ 

a =1 

N 

a (ζ ) ̂  u 

a (τ ) = ˜ u (ζ , τ ) for ζ ∈ �u , (23)



J. Sladek et al. / International Journal of Solids and Structures 96 (2016) 126–135 129 

Fig. 1. Quarter of rectangular plate with a circular hole. 
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Furthermore, in view of the MLS-approximations ( 21 –22 ) for

he unknown quantities in the local boundary-domain integral

qs. (12) , and ( 14 ), one obtains their discretized forms as 

n 
 

a =1 

[(∫ 
L s 

O (x ) C B 

a (x ) d�

)
ˆ u 

a (τ ) −
(∫ 

�s 

ρN 

a d�

)
¨̂
 u 

a 
(τ ) 

]

+ 

n ∑ 

a =1 

(∫ 
L s 

βO 1 (x ) N 

a (x ) d�

)
ˆ φa (τ ) 

= −
∫ 
�st 

˜ t (x , τ ) d� −
∫ 
�s 

ρb (x , τ ) d�, (24) 

n 
 

a =1 

[(
α

∫ 
L s 

O 

T 
1 (x ) P 

a (x ) d�

)
ˆ φa (τ ) −

(∫ 
�s 

ρk N 

a (x ) d�

)
¨̂
 φ
a 

(τ ) 

]

Fig. 2. Variation of stress component σ 11 a
−
n ∑ 

a =1 

(∫ 
�s 

ω N 

a (x ) d�

)
˙ ˆ φ

a 

(τ ) −
n ∑ 

a =1 

(∫ 
�s 

ξN 

a (x ) d�

)
ˆ φa (τ ) 

−
n ∑ 

a =1 

(∫ 
�s 

βP 

aT (x ) d�

)
ˆ u 

a (τ ) = −
∫ 
�s 

ρl(x , τ ) d�, (25) 

here Eq. (24) is considered on sub-domains adjacent to the inte-

ior nodes as well as to boundary nodes on �st , while Eq. (25) on

ub-domains of each node, because of the boundary condition ( 9 ). 

Collecting the discretized local boundary-domain integral equa-

ions together with the discretized boundary conditions for the

isplacements, results in a complete system of ordinary differen-

ial equations which can be rearranged in such a way that all

nown quantities are on the r.h.s. Thus, in matrix form, the system

ecomes 

 ̈x + B ̇ x + Cx = Y . (26)

There are many time integration procedures for solving this

ystem of ordinary differential equations. In the present work,

he Houbolt method is applied. In the Houbolt finite- difference

cheme ( Houbolt, 1950 ), the “acceleration” ( ̈x a ∈ { ̈̂  u 

a 
, 

¨̂
 φa } ) is ex-

ressed as 

ẍ τ+�τ = 

2 x τ+�τ − 5 x τ + 4 x τ−�τ − x τ−2�τ

�τ 2 
, (27) 

here �τ is the time step. The backward difference method is

pplied for the approximation of “velocities”

˙ x τ+�τ = 

x τ+�τ − x τ

�τ
. (28) 

Substituting Eqs. (27) and ( 28 ) into Eq. (26) , we get the follow-

ng system of algebraic equations for the unknowns x τ+�τ
 

2 

�τ 2 
A + 

1 

�τ
B + C 

] 
x τ+�τ

= 

1 

�τ 2 
(5 A + B �τ ) x τ + A 

1 

�τ 2 
{ −4 x τ−�τ + x τ−2�τ } + Y . (29) 

The value of the time step has to be appropriately selected with

espect to material parameters (wave velocities) and time depen-

ence of the boundary conditions. 
long x 2 -axis for various values of K. 
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Fig. 3. Influence of the dimensionless parameter K on the displacement u 1 at point A. 

Fig. 4. Influence of the dimensionless parameter K on the stress σ 11 at point B. 
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5. Numerical examples 

5.1. Rectangular plate with a circular hole (Kirsch‘s problem) 

The static problem of uniaxial tension on a rectangular plate

with a circular hole (Kirsch‘s problem) is analyzed to verify accu-

racy of the present computational method. The same problem has

been analyzed by the FEM ( Iovane and Nasedkin, 2005 ). The geo-

metric parameters are illustrated in Fig. 1. 

The length of the specimen is considered as L = 0 . 05 m and

width w = 0 . 02 m . Various ratios of the radius of the hole to the

plate width R/w are considered. The material parameters were

taken as follows: Young’s modulus E = 2 · 10 11 N/ m 

2 , Poisson ratio
= 0 . 3 , parameters related to porosity of the medium α = 0 . 01 N

nd ξ = 6 · 10 4 N/ m 

2 . The coefficient β is determined by the dimen-

ionless coupling parameter 

 = 

β2 

ξ (2 μ + λ) 
. (30)

Lame’s parameters for an isotropic material are easily expressed

hrough Young’s modulus and Poisson’s ratio as: 

= 

E 

2(1 + ν) 
; λ = 

Eν

(1 + ν)(1 − 2 ν) 
. (31)

In numerical analyses we have used 390 nodes with an irreg-

lar distribution like Atluri et al. (2006) for a similar problem in
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Fig. 5. A cantilever beam. 
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Fig. 6. Variation of beam deflection along x 1 -axis for various values of K. 
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b  
lassical linear elasticity. A uniform tension stress σ0 = 1 Pa is con-

idered. All body forces are vanishing ( b i = l = 0 ). One can observe

hat the stress concentration around the hole in elastic material

ith voids exceeds the stress concentration around the hole in ho-

ogeneous elastic material ( Fig. 2 ). The influence of the dimen-

ionless coupling parameter K on the displacement u 1 and stress

11 for two different ratios R/w is presented in Figs. 3 and 4 . Very

ood agreement between MLPG and FEM results can be seen. The

EM results have been obtained using COMSOL Multiphysics soft-

are package with 1107 triangular elements with Lagrange approx-

mation of the second order. 

As the radius of the hole grows with respect to the plate width

he stress concentration at point B increases. However, the influ-

nce of the dimensionless parameter K is the same for both ra-

ios R/w = 0.25 and 0.5. Almost parallel curves for displacement and

tress can be seen in Figs. 3 and 4 , respectively. 
6

.2. Analysis of a cantilever beam 

A cantilever beam under uniform normal load on the upper sur-

ace is analyzed in the second example ( Fig. 5 ). Plane stress con-

itions are considered. The same material parameters are used as

n the previous example. The following geometry is considered:

ength of the beam L = 3 m, height w = 1 m. 

A regular distribution of 341 (31 ×11 = 341) nodes is considered

n numerical analyses. The variation of the beam deflection at the

eutral axis ( x 2 = w/ 2 ) along x 1 -axis is presented in Fig. 6 . One

an observe that the deflection of a beam of elastic material with

oids exceeds the deflection of a beam of homogeneous elastic ma-

erial. The effect of increasing the coupling parameter, K , on the

eam deflection increase is nonlinear. Again very good agreement

etween MLPG and FEM results can be seen. The FEM results have

een obtained using COMSOL Multiphysics software package with

72 triangular elements. 
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Fig. 7. Time variation of the beam deflection at x 1 = L for various values of K. 

Fig. 8. Central crack in a finite strip with voids. 
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The same beam is analyzed under impact load with Heaviside

time variation. The additional material coefficients are considered

as in Puri and Cowin (1985) : the mass density ρ = 7500 kg/ m 

3 and

two different values of ω: ω = α/ 10 , ω = α. The inertial coefficient

for the change in volume fraction is vanishing ( k = 0 ). The same

node distribution for approximation of fields is used as in the static

case. 

One can observe in Fig. 7 that amplitudes of the beam deflec-

tion are approximately doubled with respect to static values (see

Fig. 6 , where u 2 = 0 . 285 · 10 −9 m for K = 0 . 6 ). The parameter ω is

responsible for damping. With increasing the value of ω, the am-

plitude decreases with time. 
.3. Analysis of porous finite strip with central crack 

Let us consider a central straight crack of length 2 a in the con-

idered porous finite strip with a uniform tension σ 0 acting on the

op and bottom surfaces (see Fig. 8 ). The geometry of the strip has

he following values: a = 0 . 5 m, a/w = 0 . 4 and h/w = 1 . 2 . Due to

he symmetry of the problem with respect to both Cartesian coor-

inates, only a quarter of the strip is modeled. All body forces are

anishing ( b i = l = 0 ). 

The displacements and micro-dilatation on the finite strip are

pproximated using 930 (31 ×30) equidistantly distributed nodes.

he local subdomains are selected to be circular with radius
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Fig. 9. Crack opening displacement along the crack. 

Fig. 10. Variation of the stress σ 22 ahead of the crack tip. 
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 loc = 0 . 028 m . The FEM results are obtained using COMSOL Multi-

hysics software package with 3595 triangular (6-node) elements.

he crack opening displacement for a uniform load σ0 = 1 Pa is

resented in Fig. 9 . A very good agreement can be seen be-

ween MLPG and FEM results. A small discrepancy less than 2%

ppears for porous elastic material with corresponding coupling

umber K = 0.6. Furthermore, a significant increase of the crack

pening displacement is observed with increasing porosity (dimen-

ionless coupling parameter K ). This observation is opposite to that
n ( Popuzin and Pennisi 2014 ). Extending the observation of the

revious examples to crack problems, the stiffness of a porous

edium decreases, and displacements should grow with higher

orosity. 

Ciarletta et al. (2003) showed that the singular behavior at

he crack tip for a finite crack in an infinite medium described

y micro-dilatation theory is the same as in conventional elas-

icity. This observation is not surprising, since the media with

oids considered within the Cowin-Nunziato theory is a continu-
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Fig. 11. Time variation of the normalized SIF for cracked specimen under impact load. 

Fig. 12. Influence of material parameter ω on the amplitudes of SIF for cracked specimen under impact load. 
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ous media without modeling any discontinuous material nonho-

mogeneities, and the influence of voids is taken into account via

the porosity change function, equilibrated stresses and forces. Thus,

stresses exhibit 1 / 
√ 

r behavior, where r is the radial polar coor-

dinate with origin at the crack tip. Therefore the stress intensity

factor (SIF) for the first mode is defined like in classical fracture

mechanics 

K I = lim 

r→ 0 

√ 

2 π r σ22 (r, 0) . (32)

Thus, the stress field near the crack tip vicinity is a product

of two factors: (i) the SIF which is dependent on the solution of

the boundary value problem (b.v.p.) and material coefficients; (ii)
he singular factor 1 / 
√ 

r which is the same for any elastic con-

inuous media and independent on the b.v.p. The stress intensity

actor of pure mode I for the considered boundary conditions is

 

class 
I 

= 1 . 42 Pa · m 

1 / 2 for classical elastic material ( K = 0). This value

s computed from Eq. (30) by extrapolating the near-field quanti-

ies ( σ 22 ) ahead of the crack tip. The variation of the stress com-

onent σ 22 ahead the crack tip is presented in Fig. 10 . The stress

alues in the porous material ( K = 0 . 6 ) are larger than that in the

ame material without pores ( K = 0 ). Obviously, the larger values

f σ 22 obtained from the numerical solution of the considered

.v.p. in the porous medium with K = 0 . 6 yield larger value of SIF

 

K=0 . 6 = 1 . 56 Pa · m 

1 / 2 . 

I 
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The same cracked specimen under an impact load with Heav-

side time variation is analyzed too. The additional material coef-

cients are considered as: mass density ρ = 7500 kg/ m 

3 and ω =
/ 10 . The SIF is normalized by K 

I0 
= σ0 

√ 

πa . The time variation

f the normalized SIF for porous and non-porous medium is pre-

ented in Fig. 11 . One can observe that the peak of the SIF for

orous medium is a little bit larger than that in non-porous one.

he same amplification of SIF in porous medium has been ob-

erved in static case. The peak value in porous medium is shifted

o larger time instants. This predicted slower propagation of elas-

ic waves in porous medium which is consistent with the concept

f softening the continuous medium with increasing porosity. The

alue of the parameter ω has an influence on the damping of the

IF amplitudes. With increasing the value of ω parameter the level

f damping is increasing (see Fig. 12 ). 

. Conclusions 

An MLPG model is successfully developed for coupled partial

ifferential equations describing elasticity problems in a medium

ith voids. The mechanical displacements and the micro-dilatation

change in matrix volume fraction from a reference state) fields are

oupled via the constitutive equations in Cowin-Nunziato theory.

he influence of porosity on the stress concentration factor is in-

estigated. The stress concentration factor in the case of medium

ith voids is always higher than that in the case of elastic medium

ithout voids. This is consistent with the concept of voids in the

keleton, where stress transfer is possible only through the skele-

on, and therefore stresses in the skeleton are increasing with in-

reasing porosity. In the case of crack problems, the amplification

f stress concentration (represented by the stress intensity factor)

s only about 10% for medium with dimensionless porosity param-

ter K = 0.6. Recall that there is a singular concentration of stresses

ear the crack tip and the amplification of huge stresses must

e limited because of the energetic balance. The parameter ω in

owin-Nunziato theory has a damping effect in dynamic problems.

ith increasing the value of ω, the amplitude decreases with time.

he propagation of elastic waves in a porous medium is slower

han that in the same material without pores. 

cknowledgment 

The first and third authors acknowledge the support by the Slo-

ak Science and Technology Assistance Agency registered under

umber APVV-14-0216 . The generous support of California State

niversity, Northridge (CSUN) to the fourth author is also acknowl-

dged. 

eferences 

shby, M.F. , Evans, A.G. , Fleck, N.A. , Gibson, L.J. , Hutchinson, J.W. , Wadley, H.N.G. ,
20 0 0. Metal Foams: A Design Guide. Butterworth Heinemann, Oxford . 

dkin, R.J. , Cowin, S.C. , Fox, N. , 1977. On boundary conditions for polar materials.

ZAMP 28, 1017–1026 . 
tluri, S.N. , Shen, S.P. , 2002. The meshless local Petrov-Galerkin (MLPG) method:
a simple & less costly alternative to the finite element and boundary element

methods. CMES: Comput. Model. Eng. Sci. 3, 11–51 . 
tluri, S.N. , Han, Z.D. , Shen, S.P. , 2003. Meshless local Petrov-Galerkin (MLPG) ap-

proaches for solving the weakly-singular traction & displacement boundary in-
tegral equations. CMES: Comput. Model. Eng. Sci. 4, 507–516 . 

tluri, S.N. , 2004. The Meshless Method, (MLPG) for Domain & BIE Discretizations.
Tech. Sci. Press . 

tluri, S.N. , Liu, H.T. , Han, Z.D. , 2006. Meshless local Petrov-Galerkin (MLPG) mixed

collocation method for elasticity problems. CMES: Comput. Model. Eng. Sci. 14,
141–152 . 

iot, M.A. , Willis, D.G. , 1957. Elastic coefficients of the theory of consolidation. J.
Appl. Mech. 24, 594–601 . 

iarletta, M. , Iovane, G. , Sumbatyan, M.A. , 2003. On stress analysis for cracks in elas-
tic materials with voids. Int. J. Eng. Sci. 41, 2447–2461 . 

handrasekharaiah, D.S. , 1987. Effects of surface stresses and voids on Rayleigh

waves in an elastic solid. Int. J. Eng. Sci. 25, 205–211 . 
olombo, P.K., Scheffler, M. (Eds) 2005. Cellular Ceramics. Wiley-VCH, Weinheim. 

owin, S.C. , Nunziato, J.W. , 1983. Linear elastic materials with voids. J. Elasticity 13,
125–147 . 

an, Z.D. , Atluri, S.N. , 2004a. Meshless local Petrov-Galerkin (MLPG) approaches
for solving 3D problems in elasto-statics. CMES: Comput. Model. Eng.. Sci. 6,

169–188 . 

an, Z.D. , Atluri, S.N. , 2004b. A meshless local Petrov-Galerkin (MLPG) approach for
3-dimensional elasto-dynamics. CMC: Comput. Mater. Continua. 1, 129–140 . 

oubolt, J.C. , 1950. A recurrence matrix solution for the dynamic response of elastic
aircraft. J. Aeronaut. Sci. 17, 371–376 . 

ovane, G. , Nasedkin, A.V. , 2005. Finite element analysis of static problems for elastic
media with voids. Comput. Struct. 84, 19–24 . 

ancaster, P. , Salkauskas, K. , 1981. Surfaces generated by moving least square meth-

ods. Math. Comput. 37, 141–158 . 
ayroles, B. , Touzot, G. , Villon, P. , 1992. Generalizing the finite element method.

Comput. Mech. 10, 307–318 . 
opuzin, V. , Pennisi, M. , 2014. Fast numerical method for crack problem in the

porous elastic material. Meccanica 49, 2169–2179 . 
uri, P. , Cowin, S.C. , 1985. Plane waves in linear elastic materials with voids. J. Elas-

ticity 15, 167–183 . 

amézani, H. , Steeb, H. , Jeong, J. , 2012. Analytical and numerical studies on Pe-
nalized Micro-Dilatation (PMD) theory: macro-micro link concept. Eur. J. Mech.

A/Solids 34, 130–148 . 
amézani, H. , Jeong, J. , 2015. Non-linear elastic micro-dilatation theory: matrix ex-

ponential function paradigm. Int. J. Solids Struct. 67-68, 1–26 . 
calia, A. , Sumbatyan, M.A. , 20 0 0. Contact problem for porous elastic half-plane. J.

Elasticity 60, 91–102 . 

calia, A. , 2002. Contact problem for porous elastic strip. Int. J. Eng. Sci. 40, 401–410 .
hirzadi, A. , Sladek, V. , Sladek, J. , 2013. A meshless simulations for 2D nonlin-

ear reaction-diffusion Brusselator system. CMES - Comput. Model. Eng. Sci. 95,
259–282 . 

ladek, J. , Sladek, V. , Atluri, S.N. , 2004. Meshless local Petrov-Galerkin method in
anisotropic elasticity. CMES: Comput. Model. Eng. Sci. 6, 477–489 . 

ladek, J. , Sladek, V. , Zhang, Ch. , Solek, P. , 2007. Application of the MLPG to ther-
mo-piezoelectricity. CMES - Comput. Model. Eng. Sci. 22, 217–233 . 

ladek, J. , Sladek, V. , Solek, P. , Wen, P.H. , 2008a. Thermal bending of Reissner–

Mindlin plates by the MLPG. CMES - Comput. Model. Eng. Sci. 28, 57–76 . 
ladek, J. , Sladek, V. , Solek, P. , Wen, P.H. , Atluri, S.N. , 2008b. Thermal analysis of

Reissner-Mindlin shallow shells with FGM properties by the MLPG. CMES -
Comput. Model. Eng. Sci. 30, 77–97 . 

ladek, J. , Sladek, V. , Solek, P. , Pan, E. , 2008c. Fracture analysis of cracks in magne-
to-electro-elastic solids by the MLPG. Comput. Mech. 42, 697–714 . 

ladek, V. , Sladek, J. , Zhang, Ch. , 2008d. Computation of stresses in non-homoge-

neous elastic solids by local integral equation method: a comparative study.
Comput. Mech. 41, 827–845 . 

ladek, J. , Sladek, V. , Solek, P. , 2009. Elastic analyses in 3D anisotropic functionally
graded solids by the MLPG. CMES - Comput. Model. Eng. Sci. 43, 223–251 . 

ladek, J. , Stanak, P. , Han, Z.D. , Sladek, V. , Atluri, S.N. , 2013. Applications of the MLPG
method in engineering & sciences: a review. CMES - Comput. Model. Eng. Sci.

92, 423–475 . 

ladek, J. , Sladek, V. , Pan, E. , Young, D.L. , 2014. Dynamic anti-plane crack analysis in
functionally graded piezoelectric semiconductor crystal. CMES - Comput. Model.

Eng. Sci. 99, 273–296 . 

http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30131-7/sbref0033

	Static and dynamic behavior of porous elastic materials based on micro-dilatation theory: A numerical study using the MLPG method
	1 Introduction
	2 Governing equations for elastic materials with voids
	3 Local integral equations
	4 Moving least square approximation
	5 Numerical examples
	5.1 Rectangular plate with a circular hole (Kirsch`s problem)
	5.2 Analysis of a cantilever beam

	5.3 Analysis of porous finite strip with central crack
	6 Conclusions
	 Acknowledgment
	 References


