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A B S T R A C T

The applications of smart structures with integrated piezoelectric elements have been expanding in the last few
decades due to the abilities of such structures to withstand mechanical loads and operate as sensors or actuators
using their electromechanical coupling. The available manufacturing techniques can result in uncertainties in the
structure's geometric parameters, which, coupled with uncertainties in material properties, can lead to unexpected
failures or unreliable performance. This paper presents a reliability analysis of a smart laminated composite plate
made of a graphite/epoxy cross-ply substrate with a piezoelectric fiber-reinforced composite (PFRC) actuator
layer under static electrical and mechanical loads. A coupled finite element (FE) model was developed in COMSOL
Multiphysics, from which nondimensional stresses and displacements were calculated. To investigate the effects
of randomness in the material and geometric properties, an artificial neural network (ANN) model was developed
and trained using generated FE data. Monte Carlo Simulation (MCS) and First- and Second-Order Reliability
Methods (FORM/SORM) were then used to shed light on the significance of considering randomness in the
various material and geometric parameters and the effect of such uncertainty on the resulting nondimensional
stresses and displacements. A coefficient of variation (CV) study identified the piezoelectric stress coefficient as
the most significant contributing factor to the variation of all nondimensional parameters. Variation in the
nondimensional parameters also increases under the application of an electric load. ANN-based FORM, SORM,
and MCS all indicate a pattern of low probability of failure until a threshold value of about 3% of input parameter
variation is reached, beyond which there is a rapid nonlinear increase in failure probability with increasing input
parameter variation.
1. Introduction

Due to their flexibility in design, and high specific strength and
stiffness, laminated composite materials have been introduced in many
industries. This is achieved through the integration of two or more
constituents in such a way as to achieve desirable properties unavailable
to the constituents individually. The incorporation of smart materials,
such as shape memory alloy (SMA) wires and piezoelectric sensors or
actuators, in laminated structures can greatly extend and enhance their
already numerous practical advantages, albeit at the cost of increased
complexity [1, 2, 3, 4]. However, due to the inherent uncertainty in
composite plies and laminated structures, as well as the large number of
variables to consider, a purely deterministic study can lead to lead to
non-conservative or misleading results [5]. When considering the
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uncertainty in manufacturing, processing, and assembly, it is apparent
that the efficient study of randomness in the material and geometric
properties of smart composite structures is essential.

Numerous studies have focused on the effect of uncertainty in ma-
terial properties of the behavior of various composite structures sub-
jected to static or dynamic loads using analytical or computational
models. Some studies considered only randomness in material properties
[6, 9], and other studies also included randomness in ply thickness,
fiber-orientation angles [7], or the laminae strength parameters [8]. In
addition, studies focused on static loads [6], buckling [7], and/or
first-ply-failure (FPF) probabilities [7, 8, 9]. Stochastic finite element
method (SFEM) and Monte Carlo simulations (MCS) are among the
most-used methods in analyzing such structures with uncertain material
and geometric properties. Recently, Dodwell et al. [10] used a novel
ber 2022
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method called “Multilevel Monte Carlo (MLMC) with selective refine-
ment” to efficiently calculate structural failure probabilities. They
showed that little random variations in ply angles increase the risk of
buckling failure significantly. Martinez and Bishay [5] also performed a
stochastic FPF analysis of various laminated composite plates under
in-plane tensile loading. They showed that randomness in ply thickness,
fiber-orientation angles, and the ultimate strength parameters can lead to
not only significant variations in failure loads, but also in the plies that
fail first under such loads. Reliability analysis of laminated composite
plates under static and dynamic loads was also the focus on many studies
[11, 12, 13, 14, 15, 16, 17], using MCS, First-Order Reliability Method
(FORM), and Second-Order Reliability Method (SORM). Tawfik et al.
[17] analyzed laminated composite plates in free vibration using Artifi-
cial Neural Networks (ANNs) and SORM. They included the effect of
randomness in ply thickness, demonstrating a significant effect on the
probability of failure. In general, uncertainties in material and geometric
properties lead to uncertainties in failure loads, failure plies and/or
failure modes, whether the composite, or hybrid composite, laminate was
loaded in-plane or out-of-plane, statically or dynamically [5, 7].

The addition of smart materials, such as piezoelectric layers, in
composite laminates increases design complexity and thus the subse-
quent analyses [2]. There have been many theories proposed for the
analysis of laminated composite structures with both embedded and
surface piezoelectric materials. Saravanos et al. [18] presented FEM
model for laminates with piezoelectric layers for actuation and sensing.
Exact solutions for predicting the coupled electromechanical vibration
characteristics of simply-supported laminated piezoelectric plates were
developed by Heyliger and Saravanos [19], as well as Moleiro et al. [20]
in order to overcome the limited number of test cases. Abumeri and
Chamis [21] presented a computational simulation method to evaluate
deterministic and non-deterministic dynamic buckling of smart com-
posite shells, showing that uncertainties in fiber volume ratio and ply
thickness have large effects on the buckling load, while uncertainties in
electric field and smart material volume fractions have moderate effects.
Shiao and Chamis [22] presented a probabilistic design method applied
to smart composite structures, finding that reduction of the random
variables’ coefficient of variation (CV) with negative sensitivity factors
reduces failure probability. Swain et al. [23] presented a stochastic
bending analysis of piezoelectric laminates with uncertain material
properties only.

While there have been reliability analyses performed on both lami-
nated composite structures and laminated smart structures, the method
of combining FORM and SORM with trained ANNs has not been previ-
ously applied to laminated composite structures with piezoelectric layers
to the best of the authors knowledge. FORM and SORM, which are
commonly used reliability analysis techniques, require the definition of
performance functions as well as the derivatives of these performance
functions with respect to each of the inputs. Given the large number of
random variables to consider in smart composite problems, this is diffi-
cult or even impossible to achieve. This work presents a reliability
analysis of laminated composite plates, with a piezoelectric fiber-
reinforced composite (PFRC) actuator placed on the surface, under
static loads. An FEM model is developed in COMSOL Multiphysics and
validated against previous research. The model is then used repeatedly
with systematically randomized input values (geometric and material
properties) to generate training data for the ANNs. The trained ANNs are
then used in the reliability analysis of the smart composite plates under
study to investigate the effect of randomness of all geometric and ma-
terial properties on the stress and displacement components. The use of
ANNs in this research is twofold: to provide accurate performance
function estimations without the additional use FEM solutions and to
provide accurate approximations of performance function derivatives
with respect to any input parameter. This effectively enables the use of
FORM and SORM without explicit definitions of the performance func-
tions in terms of the input variables. Additionally, because of the
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flexibility of defining the neural network architecture and the ability of
the ANNs to allow for an arbitrary number of both input and output
variables, the potential scalability of this technique to more complex
problems involving higher numbers of random variables is demonstrated.
The usage of ANNs in conjunction with FORM and SORM for the analysis
of similar smart composite structures have not been presented before in
the literature. The effectiveness and efficiency of the proposed approach
even increase as the geometric configuration of the structure gets more
complicated.

The rest of this paper is organized as follows: A quick overview on
piezoelectric materials and the coupled layerwise theory used in the
COMSOL model is first introduced in Section 2. This is followed by the
materials and methods section (Section 3) which includes model
description, COMSOL model validation, and ANN training and valida-
tion. All numerical results, starting with a coefficient of variation study,
and followed by the reliability analysis are presented in the Results
section (Section 4). A discussion is presented next in Section 5, and the
paper is concluded in the last Conclusions section.

2. Theory

2.1. Piezoelectric materials and coupled layerwise theory in COMSOL
multiphysics

Piezoelectric materials exhibit a coupling between the mechanical
and electrical physical domains. When subjected to an applied mechan-
ical stress, a piezoelectric material generates an electric potential pro-
portional to the applied stress. This effect is reversible, such that the
application of an electric field will induce mechanical strain proportional
to the magnitude of the applied field. These phenomena, referred to as
the direct and converse piezoelectric effects, respectively, can be repre-
sented mathematically by the following constitutive equations (Eq. (1)):

σi ¼ CijSj þ eikEk

Dl ¼ eljSj þ εlkEk
(1)

where σi and Sj (i, j ¼ 1–6) are the components of the mechanical stress
and strain tensors, respectively, written in a vector form, Dl and Ek (l, k ¼
1–3) are the components of the electric displacement and electric field
vectors, respectively. Cij, elj and εlk are the components of the material
stiffness tensor, piezoelectric stress coefficient matrix, and dielectric
permittivity matrix, respectively [24]. The components of the electric
field vector can also be expressed as the gradient of the electric potential,
φ, as (Eq. (2))

Ek ¼ � ∂φ
∂xk

(2)

The layerwise piezoelectric lamination theory includes three
displacement components and an electric potential as state variables with
piecewise continuous representations through the thickness of a laminate
of (N � 1) plies as (Eq. (3))

uðx; y; z; tÞ ¼
XN

j¼1
Ujðx; y; tÞΨ jðzÞ; vðx; y; z; tÞ ¼

XN

j¼1
Vjðx; y; tÞΨ jðzÞ;

wðx; y; z; tÞ ¼
XN

j¼1
Wjðx; y; tÞΨwjðzÞ; φðx; y; z; tÞ ¼

XN

j¼1
Φjðx; y; tÞΨ jðzÞ

(3)

where superscript j here indicates the boundary points zj of each layer,
and Uj, Vj, Wj, and Φj are the displacements and electric potential,
respectively, of point zj. Ψ jðzÞ are interpolation functions. For a single
layer (i.e., N ¼ 2), the method reduces to a single-layer theory. For linear
Ψ jðzÞ, it reduces to the first-order shear deformation theory. The thick-
ness can also be assumed constant with ΨwjðzÞ ¼ 1. For variable Ψ jðzÞ, the
method is a three-dimensional lamination theory. Local in-plane
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approximations of the generalized electromechanical state in the previ-
ous equation are expressed as (Eq. (4))

Ujðx; y; tÞ ¼
XM
i¼1

UjiðtÞRu
i ðx; yÞ; Vjðx; y; tÞ ¼

XM
i¼1

VjiðtÞRv
i ðx; yÞ;

Wjðx; y; tÞ ¼
XM
i¼1

WjiðtÞRw
i ðx; yÞ; Φjðx; y; tÞ ¼

XM
i¼1

ΦjiðtÞRφ
i ðx; yÞ

(4)

where Uji, Vji, and Wji are the values of the respective generalized
displacement components Uj, Vj, and Wj corresponding to the ith in-
plane interpolation function Riðx; yÞ, and similarly for Φji, Φj and Rφ

i .
This formulation is the basis of the finite element solution, which is
implemented in COMSOL Multiphysics.

Contrary to equivalent single layer (ESL) theories, this layerwise (LW)
theory ensures that the displacement fields satisfy the piecewise conti-
nuity requirement throughout the thickness. Although this results in
transverse strains being discontinuous at interfaces between laminae, it
allows for accurate prediction of transverse shear stresses, thus making it
suitable for modeling thick shells. While this accuracy comes at an
additional computational cost relative to ESL theories, it also allows for
accurate multiphysics modeling of piezoelectric layers in a composite
laminate.

3. Materials and methods

3.1. Model description: hybrid smart composite plate under static
mechanical and electrical loads

Consider a smart composite plate made of a symmetric cross-ply
square laminate (substrate) with a surface piezoelectric layer and sim-
ply supported from all sides (SSSS). The stacking sequence is [p/0/90/0],
where “p” indicating the piezoelectric layer. The piezoelectric layer is a
unidirectional piezoelectric fiber-reinforced composite (PFRC), which is
a hybrid material consisting of piezoelectric fibers aligned perpendicular
to the layer thickness and held in a matrix, similar to a carbon fiber-
reinforced polymer (CFRP) material. The PFRC is assumed homoge-
nous with continuous and parallel fibers. Perfect bonding is assumed at
all layer interfaces. Figure 1 shows an exploded view of the smart plate
under consideration. This smart composite plate is subjected to a
downward, transverse, sinusoidally distributed mechanical load of
magnitude q0 and a sinusoidal electric potential V0 across the thickness of
the PFRC layer. Analytical and numerical solutions to this problem were
presented in the studies of Mallik and Ray [25] and Rouzegar and Abbasi
[26], respectively.

This laminate and loading conditions are chosen to compare results
against previously published research. The definitions of the sinusoidally
distributed load (SDL) and the sinusoidally distributed potential (SDP)
are given as (Eq. (5)),
Figure 1. Exploded view of the smart hybrid composite plate (not to scale).
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SDL¼ q0 sin
h�πx

a

��πy
a

�i
; SDP¼V0 sin

h�πx
a

��πy
a

�i
(5)
where x and y are the global coordinates in the COMSOL model and a is
the plate length or width. The material properties of the graphite/epoxy
substrate and the PFRC layer are in Table 1 and Table 2, respectively
[26]. The thickness of each orthotropic graphite/epoxy layer in the
substrate is t¼ 1mm, whereas the thickness of the PFRC layer is tp¼ 0.25
mm. The magnitude of the applied SDL is q0 ¼ �40 N/m2 and that of the
SDP takes values in the set V0 ¼ {�100, 0, 100}V.

The resulting nondimensional in-plane and transverse displacements
and in-plane normal and shear stresses are defined as (Eq. (6))

u¼
�

E2

q0S4h

�
u; w¼

�
100E2

q0S4h

�
w; σx ¼ σx

q0S2
; τxy ¼ τxy

q0S2
(6)

where h¼ 3t is the substrate thickness and S¼ a/h is the side-to-thickness
ratio of the substrate layer.

3.2. COMSOL model validation

A 4� 4 mesh of shell elements in the Layered Shell interface, which is
based on the LW theory, was found to be convergent for this problem.
Table 3 and Table 4 show the respective nondimensional in-plane and
transverse displacements and in-plane normal and shear stresses calcu-
lated at various locations on the hybrid smart composite plate, as well as
points through the thickness at those locations, as specified in the tables.
Results are shown for S ¼ 10 and S ¼ 20, respectively, for the nondi-
mensional displacements and stresses to demonstrate the accuracy of the
model for various laminate thicknesses. The results are in very good
agreement with the exact solutions in [25]. For all combinations of
nondimensional parameter and applied voltage, the developed COMSOL
model accurately predicted the correct values within 1.00% of the exact
values presented in [25], with most errors well within 0.5%.

A side-to-thickness ratio of S¼ 10 is selected for the following studies,
with both SDL (q0 ¼ 40 N/m2 downward) and SDP (V0 ¼ 100 V) applied.
Nine random variables from the graphite/epoxy substrate and 14 random
variables from the PFRC actuator layer were considered. The nondi-
mensional stresses and in-plane displacements are all retrieved on the top
surface of the substrate at the interface with the PFRC layer (z ¼ h/2).
The nondimensional transverse displacement is retrieved at the middle of
the substrate (z ¼ 0) as in Rouzegar and Abbasi [26].

3.3. Artificial neural networks (ANNs) and reliability analysis

A custom MATLAB code based on the ANN model in [17] was used in
this work to train an ANN of arbitrary architecture using the
Levenberg-Marquardt backpropagation. The benefit of using this specific
model is the ability to determine the first and second derivatives of any
output with respect to any input variable in terms of the weights, biases,
and activations of the ANN [17]. The ANN architecture used in training
the four ANN models to predict the four nondimensional parameters was
G-K-P-1, which meansG neurons in the input layer, matching the number
of random input parameters (G¼ 9þ 14¼ 23 here), K neurons in the first
hidden layer, P neurons in the second hidden layer, and one neuron in the
output later, since there is only one output variable in each ANN. Figure 2
shows an illustration of the ANNs used for estimating u andw. Since there
are no standards for selecting the number of neurons in the two hidden
layers (K and P), a grid search was performed to find K and P in each of
the four ANN models that minimize the mean square error in the
Table 1.Material properties of graphite/epoxy substrate layers (stiffnesses given
in GPa).

E1 E2 G12 G13 G23 v12 v13 v23

172.9 6.916 3.458 3.458 1.383 0.25 0.25 0.25



Table 2. Material properties of PFRC layer (stiffnesses in GPa, piezoelectric stress coefficient in C/m2, and electric permittivity in C/Vm).

C11 C12 C13 C22 ¼ C33 C23 C44 C55 C66 e31 ε11 ε22 ε33

32.6 4.3 4.76 7.2 3.85 1.05 1.29 1.29 �6.76 0.037 0.037 10.64

Table 3. COMSOL smart composite model: nondimensional displacements.

uð0;a =2; �h =2Þ S ¼ 10 % Difference

V0 ¼ 0 V0 ¼ 100 V0 ¼ �100 V0 ¼ 0 V0 ¼ 100 V0 ¼ �100

Exact (Mallik and Ray) [25] 0.0066 �3.141 3.154

�0.007 0.885 �0.904

Developed COMSOL model 0.0066 �3.141 3.154 �0.348 0.003 0.003

�0.007 0.894 �0.908 0.857 0.998 0.426

wða =2;a =2;h =2Þ S ¼ 10 % Difference

V0 ¼ 0 V0 ¼ 100 V0 ¼ �100 V0 ¼ 0 V0 ¼ 100 V0 ¼ �100

Exact (Mallik and Ray) [25] �0.710 132.9 �134.3

Developed COMSOL model �0.7072 132.23 �133.64 �0.394 �0.504 �0.491

Table 4. COMSOL smart composite model: nondimensional in-plane normal and shear stresses.

σxða =2;a =2; �h =2Þ S ¼ 20 % Difference

V0 ¼ 0 V0 ¼ 100 V0 ¼ �100 V0 ¼ 0 V0 ¼ 100 V0 ¼ �100

Exact (Mallik and Ray) [25] �0.504 57.269 �58.276

0.5305 �17.81 18.875

Developed COMSOL model �0.505 57.431 �58.441 0.324 0.284 0.285

0.532 �17.869 18.923 0.311 0.331 0.256

τxyð0;0; �h =2Þ S ¼ 20 % Difference

V0 ¼ 0 V0 ¼ 100 V0 ¼ �100 V0 ¼ 0 V0 ¼ 100 V0 ¼ �100

Exact (Mallik and Ray) [25] 0.0215 �1.822 1.8648

�0.0224 1.1232 �1.1679

Developed COMSOL model 0.021557 �1.82763 1.870746 0.265 0.309 0.319

�0.02246 1.12695 �1.17187 0.268 0.334 0.340
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obtained value of the output nondimensional parameter. The optimal
value of K for all variables was found to be 15, but the optimal values of P
were found to be 35, 30, 20 and 20 for σx; τxy ; u and w, respectively. The
MATLAB Deep Learning Toolbox was also used to validate the selection
of the optimal architectures. MATLAB predictions agreed very well with
the predictions of the custom MATLAB code.

To further increase the accuracy and improve the generalization of
the ANNs, an ensemble method was employed. Neural networks initialize
weights and biases with random values, which can affect the accuracy of
the output value. To minimize this effect, multiple networks were trained
using the optimal architecture and their outputs were averaged to obtain
an ANN ensemble which can generalize better to additional new data.
Figure 2 also schematically demonstrates the ensemble method. Table 5
presents the results of the ANN ensemble outputs from 10 trained ANNs
of the optimal architecture for each nondimensional parameter. Each
parameter is trained using the same set of 1000 samples generated using
COMSOL Multiphysics. The sample size of 1000 trials was chosen as in
[17], in which the sample sizes of 1000 and 500 were both used suc-
cessfully in a laminate composite reliability analysis including 15 random
variables. The results proved that the ensemble of ANNs with the selected
optimal architectures can generalize well to unseen input data and are
appropriate for use in the ANN-based reliability techniques considered in
this work.

Failure probability is the probability of getting a negative value of the
performance function, g(X), for a specific set of values for the random
variables X (Eq. (7)):

Pf ¼ P½gðXÞ< 0� (7)
4

The performance functions used in this study are given later in Sec-
tion 4.2. First-Order and Second-Order Reliability Methods (FORM and
SORM) models presented in [17] are also utilized in this work. For more
details, readers are referred to this reference. Figure 3 shows an outline of
the procedure and the main steps and studies in this work. The results of
all studies are presented in the next section.

4. Results

4.1. Coefficient of variation (CV) study

A CV study was performed using the COMSOL simulation results to
explore the individual effects of the CV of the random input variables on
the CV of the different nondimensional parameters. This leads to iden-
tifying the relative importance of the randomness of the various material
properties and geometric parameters, which are considered as normally
distributed random variables centered about their mean/deterministic
values. These values will form the input vector of random variables,
defined as (Eq. (8))

X ¼ ½Xsubstrate;XPFRC�;
Xsubstrate ¼ ½E1;E2;G12;G13;G23; v12; θ1; θ2; θ3�
XPFRC ¼ �

C11;C12;C13;C22;C23;C33;C44;C55;C66; e31; ε11; ε22; ε33; θp
� (8)

Eq. (8) shows the 9 total substrate random variables (6 material
properties and 3 ply angles) and the 14 total PFRC random variables (9
stiffnesses, 1 piezoelectric stress coefficient, 3 dielectric constants, and
the PFRC layer orientation). All nine substrate parameters are considered



Figure 2. Illustration of the ANNs used to estimate the nondimensional dispalcements and the ensemble approach.

Table 5. ANN ensemble results for the four nondimensional parameters.

Parameter Opt. Architecture Target Prediction Abs. Error %

σx 23-15-35-1 248.76 251.59 1.257

τxy 23-15-30-1 �7.6960 �7.8051 1.418

u 23-15-20-1 �3.1410 �3.1413 0.00955

w 23-15-20-1 132.90 132.97 0.0527
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random. The combinations of the PFRC random variables in the per-
formed simulations are listed in Table 6.

MATLAB was used to generate 1000 sets of randomized material and
geometric properties for each case presented in Table 6 for input CV of
0.10 and 0.20. These generated inputs were then exported to COMSOL to
solve for each case and obtain the nondimensional outputs. The
maximum value of CV¼ 0.20 was chosen identically to Tawfik et al. [17],
who selected this upper bound for their reliability analysis. To capture
the full effect of randomness in the hybrid plate, the graphite/epoxy
Figure 3. Outline of the main ste
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substrate properties are also allowed to vary with an equal CV to the
PFRC layer in all simulations. To simultaneously investigate the relative
importance of the PFRC properties, the same randomly generated sub-
strate properties persist throughout all simulations. The angles of the
substrate and PFRC layer were allowed to vary proportionally with input
CV and a maximum standard deviation of 1.8� at CV ¼ 0.20. This
maximum ply angle deviation was also chosen in [17].

The results for the CV study are presented in Figure 4(A)–(D). As the
figures indicate, the dielectric constants, εii, and elastic properties, Cij, of
the PFRC layer (Simulations 3 and 5, respectively) generally contributed
less to the variation of the nondimensional stresses and displacements.
The insensitivity of σx to the elastic properties can be attributed to the
relative thickness of the substrate layer to that of the PFRC layer, whereas
the dielectric constants relate only electric displacement and field, as
seen in the piezoelectric constitutive equations. The consideration of
randomness in the piezoelectric stress coefficient, e31, which directly
couples the potential difference across the PFRC layer, is highly signifi-
cant on the variation of τxy as well as the nondimensional displacements
ps and studies in this work.



Table 6. Sets of PFRC random material and geometric properties in the per-
formed simulations.

Simulation Random parameters No. of RVs

1 All piezoelectric properties/parameters random 9 þ 14 ¼ 23

2 PFRC piezoelectric stress coefficient random (e31) 9 þ 1 ¼ 10

3 PFRC dielectric constants random (εii) 9 þ 3 ¼ 12

4 PFRC layer orientation random (θp) 9 þ 1 ¼ 10

5 PFRC mechanical properties random (Cij) 9 þ 9 ¼ 18
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in both directions. In the case of τxy , e31 is almost solely responsible for
the parameter variation with respect to the input variation, as indicated
by the small horizontal distance between the lines of Simulations 1 and 2
in Figure 4(D).

Randomness in the orientation of the PFRC layer, θp, is generally not
significant on τxy . However, its variation is not only more significant on
σx than even the piezoelectric stress coefficient, but its relative impor-
tance increases at a greater rate with the increase of its variation
(Figure 4(C)). This is likely because, in the deterministic stacking
sequence, the fibers of the PFRC and substrate interface are intended to
be aligned. Any variation in the PFRC ply orientation disrupts this
alignment. This, coupled with the fact that the PFRC layer is a surface ply
that actuates parallel to its fibers, explains this disproportional effect.

Figure 5(A)–(D) show the variations of the nondimensional parame-
ters with respect to the input variation for different applied voltages in
Simulation 1 (all substrate and PFRC properties are considered random).
The figure shows that the voltage applied results in greater variation in
the nondimensional parameters than when there is no applied electrical
load on the PFRC layer. This is seemingly contrary to the findings of
Swain et al. [23] who found that variation of the mid-plate deflection
actually decreases upon the application of an electric potential across the
PFRC layer. It is possible that this is due to the electrical and mechanical
loads being uniformly distributed across the plate surface area and that
the magnitude of the transverse mechanical load is q0 ¼ 100 N/m2,
which would suggest that a change in the nature of the loading condition
can affect the sensitivity of the nondimensional parameters to input
variation. While this is plausible, it is noted that in their study, only the
mechanical properties of the smart composite laminate were allowed to
vary. Hence, this also suggests that it is important to consider all electric
and coupled piezoelectric properties in the stochastic analysis of smart
composite laminates.

The slopes of the CV of u, w and τxy indicate that there is a dispro-
portionate response in the nondimensional parameter variation with
respect to variation in the input variables. Although the CV of σx shows a
lesser magnitude of this response for V0 ¼ 0 V and V0 ¼ 100 V, it shows
the highest overall response to the case of V0 ¼ �100 V which is due to
the potential across the PFRC layer contributing additional stress relative
to a positive applied voltage. For an input CV of only 0.10, the variation
of σx reaches a value of over 0.40 for V0 ¼ 100 V and 0.23 for V0 ¼ �100
V, whereas the corresponding variations for the other nondimensional
Figure 4. Coefficient of variation of nondimensional disp
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parameters does not exceed 0.20 for the same input CV. Results for
studies in subsequent sections correspond to the case of an applied
voltage of V0 ¼ 100 V.

4.2. ANN-based reliability static analysis

To quantify failure probability, the performance function must be
defined such that failure is indicated by g(X)< 0. As such, an appropriate
performance function for σx and τxy can be defined as (Eq. (9))

gσðXÞ¼1� σp

σr
; gτðXÞ ¼ 1� τp

τr
(9)

respectively, where subscripts p and r indicate realized and required (or
design) values. Defining the performance functions for the nondimen-
sional stresses in this way indicates failure if the realized plate stress
exceeds the required or design value. The required stress values are
defined as a ratio relative to the deterministic value (e.g., σr=σdet and
τr=τdet). Subsequent studies are performed for stress ratios in the set
{1.05, 1.10, 1.15, 1.20}.

The nondimensional displacement parameters could be of interest to
designers in the context of actuation or displacement suppression.
Therefore, appropriate performance functions for u and w (e.g., to detect
minimum actuation capability) can be defined as (Eq. (10))

guðXÞ¼ up
ur

� 1; gwðXÞ ¼ wp

wr
� 1 (10)

respectively. Subsequent studies are performed for displacement ratios
(e.g., ur=udet and wr=wdet) in the set {0.90, 0.95, 0.97, 0.99}. Derivatives
of the nondimensional stresses and displacements with respect to the
input values are obtained using ANN.

4.2.1. ANN-based FORM/SORM
Figure 6(A) and (B) show a comparison of the results of the ANN-

based First- and Second-Order Reliability Methods for the σx and τxy ,
respectively, for a stress ratio of 1.20. It can be seen from the figures that
the two methods agree closely for σx, whereas FORM begins to under-
estimate the failure probability of τxy for increasing values of input CV.
Results are similar for the nondimensional displacements, which are
shown in later figures.

Both figures indicate that the nondimensional stresses have very low
failure probabilities initially, then increase rapidly in a nonlinear fashion
as input parameter variation is increased. However, FORM and SORM
both indicate a higher input parameter CV for which σx begins to show
failure. The rapid increase in failure probability is initiated at CV(X) ¼
0.06 for σx as opposed to CV(X) ¼ 0.04 for τxy . Moreover, the maximum
failure probability at input CV(X) ¼ 0.20 indicated by SORM is 0.172 for
σx versus 0.290 for τxy . These results show that the greater variation in σx,
presented earlier in Section 4.1, results in smart composite plates which
have a higher probability of withstanding the required stresses at the
interface between the substrate and PFRC layer, compared to τxy .
lacements and stresses: (A) u, (B) w, (C) σx, (D) τxy .



Figure 5. Voltage comparison: Nondimensional displacements and stresses coefficient of variation: (A) u, (B) w, (C) σx , (D) τxy .
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Figure 7(A) and (B) show the SORM failure probabilities for σx and τxy
for all stress ratios. Naturally, failure becomes more likely as the stress
ratio becomes stricter. The figures generalize the trend that σx is less
likely to exceed the required design stress values relative to τxy . Both
nondimensional stresses exceed 5% of the deterministic values for CV(X)
of even 2% or 3%.

Figure 8(A) and (B) show the SORM u and w failure probabilities for
all displacement ratios. The failure curves follow a similar pattern to the
nondimensional stresses, with a rapid increase in failure probability
followed by a plateau or inflection point at higher values of input CV(X).
Similar to τxy , both u and w generally exhibit higher failure probabilities
for any given combination of input CV(X) and displacement ratio, rela-
tive to σx.

For the least conservative displacement ratio of 0.90, SORM indicates
an initiation of failure for input CV(X) values of only 3%. In other words,
if the overall variation of material and geometric properties of the smart
composite change by at most 3% of the mean (a realistic scenario), then
there is a non-zero probability that the actuation abilities of the plate at
the interface will not reach 90% of the deterministic expectation. This
likelihood increases both as the input variation increases and as the
displacement ratio becomes more restrictive.

The failure probabilities for all nondimensional parameters are
compared in Figure 9 for required design values within 10% of the
respective deterministic expectation (i.e., stress ratio ¼ 1.10 and
displacement ratio ¼ 0.90). This figure provides a summary of the
findings detailed in the earlier parts of this section: failure probabilities
Figure 6. Nondimensional stress failure proba
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are nonlinear for all nondimensional parameters and become more likely
as variation in the input variables increases. σx and τxy are respectively
the least and most susceptible to input parameter variation, with both u
and w similarly sensitive to input variation. All nondimensional param-
eters begin to exhibit failure for input variation as little as 3%.

4.2.2. ANN-based direct MCS
Table 7 and Table 8 show the failure probabilities of the ANN-based

MCS for all nondimensional parameters. The failure probabilities shown
are estimated using ANNs trained with the optimal architecture for each
nondimensional parameter and a sample size of N ¼ 106 generated using
the trained ANNs. It can be seen from these tables that the results of the
direct MCS using the ANNs closely follow those computed by ANN-based
FORM and SORM.

A portion of relative errors of the failure probability estimates with
respect to the SORM predictions are tabulated in Table 9, indicating a
maximum error of 1.334%. Similar errors were exhibited by other
combinations of nondimensional parameter, CV, and stress/displacement
ratios, and are thus omitted. The data further validate the results
generated by FORM and SORM, as similar failure probabilities were
computed using multiple methods. The ANN-based MCS results also
show the capability of the ANNs to effectively generalize to unseen
combinations of input variables and validate the use of ANNs to
circumvent running computationally expensive FEM analysis.

The next three subsections provide further insight into the behavior of
the smart composite plate beyond the single value for failure probability
bility, Stress ratio ¼ 1.20: (A) σx , (B) τxy .



Figure 7. Stress ratio comparison: Nondimensional stress failure probability: (A) σx, (B) τxy .

Figure 8. Displacement ratio comparison: Nondimensional displacement failure probability: (A) u, (B) w.
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computed using FORM/SORM. This detailed analysis uses the data
generated in the ANN-MCS process.

4.2.2.1. Empirical distribution functions. Figure 10(A) and (B) and
Figure 11(A) and (B) present the empirical distribution functions (EDFs)
for the nondimensional stresses and nondimensional displacements,
respectively. All nondimensional parameters exhibit increasing disper-
sion with higher values of input variation, as indicated by the widening of
the EDFs about the deterministic values. These results suggest that for
any assumed value of input variation, the sample quantiles can over-
estimate the reliability of the design. For instance, if the assumed vari-
ation of input parameters has CV ¼ 0.05 (blue curve in Figure 10(left)),
the expectation is that the design will not exceed a σx of 260 with an
estimated 0.80 probability (bFðσxÞ ¼ 0:8). However, if the input variation
actually has CV ¼ 0.20 (purple curve in Figure 10 (left)), the same
probability of 0.80 corresponds to a σx of nearly 300 – almost 15.4%
more than expected. The results of the nondimensional parameter EDFs
also indicate that the difference between the assumed and actual
8

reliability of the plate is more pronounced as the difference between
assumed and actual input variation increases, which in turn highlights
the need for considering randomness in smart composite design.

4.2.2.2. Randomness in the piezoelectric stress coefficient. With the general
capability of the ANN proven, the failure probability for any arbitrary
combination of input variables (within the range of values seen by the
trained ANNs) can be estimated. Therefore, the consequences of
neglecting any random variables from the stochastic analysis can be
simulated by substituting those random variables with their mean or
design values. This study investigates the values of the nondimensional
parameters assuming that the piezoelectric stress coefficient, e31, is
deterministic, and compares the results to the scenario where all design
variables are random. e31 was identified in Section 4.1 as the most
important single design variable in terms of its effect on the variation of
each nondimensional parameter and thus its absence from the stochastic
analysis is explored in this study. The empirical distribution functions of
σx are shown in Figure 12(A)–(C) for the scenarios previously described:



Figure 9. Nondimensional parameter failure probability comparison (Stress Ratio ¼ 1.10, Displ. Ratio ¼ 0.9).

Table 7. ANN-MCS: nondimensional stress failure probability estimates.

Normal Stress Ratio In-Plane Shear Stress Ratio

CV 1.05 1.10 1.15 1.20 1.05 1.10 1.15 1.20

0.05 0.1676 0.0278 0.0021 0.000094 0.2578 0.1023 0.031 0.0072

0.10 0.3137 0.1688 0.0761 0.0288 0.3681 0.259 0.1729 0.1092

0.15 0.3715 0.2592 0.1692 0.1024 0.4053 0.3283 0.2606 0.2025

0.20 0.3994 0.3123 0.2349 0.1697 0.4251 0.3668 0.3129 0.2643

Table 8. ANN-MCS: nondimensional displacement failure probability estimates.

In-Plane Displacement Ratio Transverse Displacement Ratio

CV 0.99 0.97 0.95 0.9 0.99 0.97 0.95 0.9

0.05 0.4537 0.3541 0.2623 0.0959 0.4507 0.3487 0.2558 0.09

0.10 0.48 0.4296 0.3798 0.2612 0.4806 0.4283 0.3766 0.2558

0.15 0.4922 0.4586 0.4246 0.3406 0.4913 0.457 0.4221 0.336

0.20 0.4978 0.4727 0.4477 0.3842 0.4988 0.473 0.447 0.3812

Table 9. Nondimensional normal stress failure probability: ANN-MCS vs. SORM.

Ratio ¼ 1.05 Ratio ¼ 1.10

CV ANN SORM Δ% ANN SORM Δ%

0.05 0.1676 0.1688 0.711 0.0278 0.0280 0.714

0.10 0.3137 0.3156 0.602 0.1688 0.1695 0.413

0.15 0.3715 0.3743 0.748 0.2592 0.2618 0.993

0.20 0.3994 0.4048 1.334 0.3123 0.316 1.171
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considering all random variables and considering all random variables
except e31. σx is shown here because the effect of e31 is distinctly greater
than the other nondimensional parameters. The figure shows the
9

significant effect of omitting e31 from the stochastic analysis. This effect is
more pronounced as the input variation increases. These results show
that special attention must be given to the piezoelectric stress coefficient
during manufacturing of the PFRC layer in order to increase the reli-
ability of the design.

Although the PFRC layer orientation was identified previously as an
important random variable, the effect of not considering randomness in
this variable did not return significantly different results relative to
allowing all other properties to vary. This is likely due to the randomness
in the top ply of the substrate being allowed to vary. This potentially
reduces the degree of misalignment with the PFRC layer, which results in
reducing the effect of the PFRC layer orientation alone. This suggests that



Figure 10. EDFs for (A) σx , (B) τxy .

Figure 11. EDFs for (A) u, (B) w.
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so long as the interface fibers are aligned with one another, the nondi-
mensional stresses can be more effectively controlled.

4.2.2.3. Correction and stress factors. Failure indicated by negative per-
formance function values does not easily convey the degree to which the
structure has failed. To quantify the degree of failure, the correction
factor and the stress factor are defined as the ratio of the realized
nondimensional displacement and stress, respectively, to the determin-
istic values (Eq. (11)).

CFu ¼ up
udet

; CFw ¼ wp

wdet
; SFσ ¼

ðσxÞp
ðσxÞdet

; SFτ ¼
�
τxy

	
p�

τxy
	
det

(11)
Figure 12. σx EDF with and without piezoelectric stress coefficien
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These quantities provide easily interpretable metrics to describe the
degree of failure of the laminate. The correction factor can be interpreted
as the factor by which the realized nondimensional displacement must be
divided by to reach the deterministic value. Similarly, the stress factor
can be interpreted as the factor by which the realized nondimensional
stress exceeds the deterministic value.

The mean values for the stress and correction factors of all nondi-
mensional parameters for input variation between 1% and 20% is shown
in Figure 13. It can be seen from the figure that σx is generally less
affected by input variation, relative to τxy , u and w. This agrees with the
results of the failure probabilities in Section 4.2.1 which indicated a
lesser likelihood of failure for σx. The corresponding degree of failure is
t randomness: (A) CV ¼ 0.05, (B) CV ¼ 0.10, (C) CV ¼ 0.20.



Figure 13. Mean stress and correction factors for the nondimensional parameters: (A) σx and τxy , (B) u and w.
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also less severe for σx than for the other nondimensional parameters. In
addition, the mean correction factors of u and w are the most sensitive to
variation in the input variables. This suggests that meeting design re-
quirements for τxy , as well as the in-plane and transverse actuation (u and
w) at the substrate-PFRC interface with high reliability is more difficult.
So, variation of the material and geometric properties must be addressed
with special attention. Designers concerned with the actuation capability
of a smart composite should use more conservative displacement ratios in
their design.

Figure 14(A) and (B) and Figure 15(A) and (B) present the empirical
distribution functions for the respective stress and correction factors,
which again reinforce that the degree of failure increases as the variation
in the input variables increase.

5. Discussion

The ANN-based techniques used in this work provided an efficient
method for performinga reliability analysis of smart compositeplateswith
large number of input variables. The average computational times to
produce one failure probability prediction for SORM and ANN-MCS were
tSORM ¼ 38 s and tANN-MCS ¼ 66 s. These times include both training and
prediction time using the optimal architecture. The optimal architecture
of the usedANNswas found througha grid search. The average grid search
time using MATLAB Deep Learning Toolbox was tgrid¼ 99 s. Note that the
ANN-based reliability analysis techniques used in this research are inde-
pendent of the particular method inwhich thefinite element solutions are
obtained. The average time required to generate theMonte Carlo samples
on COMSOLwas tCOMSOL¼ 10,823 s. COMSOL resultswere generated on a
Figure 14. Stress factor E
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desktop computer with an Intel Xeon CPU E3-1240 v5@ 3.50GHz and 16
GB of ram. ANNswere trained and deployed on a laptop computer with an
Intel Core i5-8250U CPU @ 1.60GHz and 8 GB of ram. These computa-
tional times show that both the ANN-based SORM and ANN-based MCS
return failure probability results very quickly. This was also reported in
[17] among other references that utilized ANNs in reliability analysis.
Including the optimal architecture grid search, the study required 137 s
and165 s for SORMandANN-MCS results, respectively. The applicationof
the ANN-based reliability techniques can provide significant time savings
relative to direct MCS, or even optimized MCS techniques such as MCS
with Importance Sampling and Subset Simulation that was used in [17],
and in situations where there are small sample sizes as in Deng et al. [27].

Reliability analyses performed with FORM and SORM closely agreed
for all nondimensional parameter studies, although FORM under-
estimated failureprobabilities at higher values of inputCV.This highlights
the importance of accounting for the curvature of the failure surface in the
space of the input random variables and at high values of variation. The
results of FORM and SORM were also in close agreement with the failure
probability results of the ANN-based direct MCS, which demonstrated the
general capability of the trained ANNs in circumventing the need for
further finite element solutions and validating an in-depth exploration of
the MCS data.

Due to the assumption of perfect bonding between layers, the failure
probabilities reported (which are at the interface between the graphite/
epoxy substrate and PFRC layer) cannot be used to make direct state-
ments regarding interlaminar failures such as delamination. However,
these results are useful in informing whether there will be potential
interlaminar issues.
DFs: (A) σx, (B) τxy .



Figure 15. Correction factor EDFs: (A) u, (B) w.
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The analysis revealed that the piezoelectric stress coefficient of the
PFRC layer, e31, was the most important contributing factor to the reli-
ability of all nondimensional parameters considered. The absence of e31
uncertainty in the stochastic analysis could cause significant over-
estimations in the reliability of the smart composite plate and its
randomness should thus always be considered. Designers concerned with
high reliability should devote special attention to this material property
during manufacturing of the PFRC layer. This is relevant to devices oper-
ating in the 31 mode, such as extensional and bending actuators and
bimorphs. This suggests that piezoelectric material selection in the design
of these devices requires careful consideration, or that manufacturing
process controls should be implemented. Variations in all othermechanical
and electrical properties, as well as the PFRC layer orientation contributed
relatively less to the variation of all nondimensional parameters. Although
the PFRC layer orientation was shown to contribute to the nondimensional
normal stress, isolating this variable alone as deterministic did not result in
a significant difference in stress values compared to the case of all variables
random. This could be due to the randomness in the top ply of the substrate
being allowed to vary in the study, which can potentially result in less
misalignment at the substrate-PFRC interface. This suggests that the rela-
tive difference between the angles of the top substrate surface and the
PFRC layer is of greater importance than the deviation or randomness in
either layer alone.

The coefficient of variation study also identified that variation in the
nondimensional parameters increases under the application of an electric
load. This is seemingly contrary to the findings of Swain et al. [23] who
found that variation of the mid-plate deflection decreased upon the
application of an electric potential across the PFRC layer. In their study,
the transverse mechanical load was uniform rather than sinusoidal and of
greater magnitude. This suggests that the nature of the loading condi-
tions plays a large role in the CV study. In their study, only the me-
chanical properties of the smart composite laminate were allowed to
vary, which could also suggest that variation in all electrical, mechanical,
and piezoelectric properties of the PFRC layer should be considered
simultaneously in the stochastic analysis of smart composite plates.

Failure probabilities of all nondimensional parameters are highly
nonlinear, with σx and τxy respectively constituting the least and most
likely to fail for any given value of input variation. Each parameter
exhibited low probabilities of failure until a threshold value of input
variation was crossed, beyond which failure probability increased
rapidly. These failure probabilities are highly dependent on the tolerance
of the design requirements, with failure predicted with input parameter
variation as little as 2–3% for the most conservative stress and
displacement ratios considered (1.05 and 0.99, respectively).
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6. Conclusions and future work

This research investigated the stochastic effects of material prop-
erties and geometric parameters on the reliability of smart composite
plates with a PFRC actuator placed on the surface of a graphite/epoxy
cross-ply [0/90/0] laminated composite substrate. A finite element
model based on the layerwise theory was developed in COMSOL Mul-
tiphysics and used to assure accurate stresses, displacements, and
voltages are obtained. 1000 simulations were performed in COMSOL to
train four ANNs, so that they can predict the values of the four output
nondimensional parameters for any new random inputs, within the
parameter ranges used in the training process. Optimal architectures
were identified for each ANN using a grid search, and an ensemble
method was used to ensure generalization of the results. The ANN
models were then used in the FORM, SORM and MCS to study failure
probabilities of the nondimensional parameters at various levels of
input parameter uncertainties. The results of all studies led to the
following main conclusions:

- The piezoelectric stress coefficient of the PFRC layer, e31, was the
most important contributing factor to the reliability of all nondi-
mensional parameters considered.

- Variation in the nondimensional parameters increases under the
application of an electric load.

- The nondimensional normal and shear stresses at the substrate-PFRC
interface, σx and τxy respectively, are the least and most likely to fail
for any given value of input variation.

- Only 3% of variation in the input parameters can lead to failure of any
of the four nondimensional parameters. Increasing the input param-
eter variation or restricting the stress and displacement ratios that
define failure, leads to increasing the failure probabilities in a
nonlinear way.

- The degrees of failure of the nondimensional in-plane and transverse
displacements, u and w, are more sensitive to variation in the input
variables, than the nondimensional stresses.

A natural extension of this research is to consider more practical
shapes for smart composite structures such as cylinders, spheres, and
wings, as well as the free vibration of these structures under an applied
electrical load. Randomness in the ultimate strength parameters of the
laminated composite and the piezoelectric layers can be considered as
well in order to detect the overall mechanical and structural failure.
Future research can also account for the presence of delamination at the
layer interfaces.
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