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This paper highlights the amount of risk taken when a deterministic approach is used in designing composite 

structures without consideration of stochastic effects. The study treats all material and geometric parameters of 

the composite laminated plates under investigation as stochastic. Monte Carlo simulation is employed to inves- 

tigate the stochastic effects of material properties, ply thickness, and ply orientation on the failure of laminated 

composite plates under static loads. Classical lamination theory is used to calculate the strength ratios using 

maximum stress, Tsai-Hill, and Tsai-Wu failure criteria for plates of three different materials in various stacking 

sequences. Variation in the failure ply distributions are shown to increase with coefficient of variation of the input 

variables. A positive linear trend between the coefficients of variation of the strength ratio and input variables 

is found, whose slope increases as randomness is considered for more input variables. Probability of failure and 

failure ply distributions are shown to be heavily dependent on the combination of laminate stacking sequence, 

material, and failure probability. In particular, while the empirical failure probability for cross-ply laminates is 

highest for the ply predicted by a deterministic analysis, this probability decreases rapidly with increasing vari- 

ation in input parameters. Further, the failure of unexpected plies for cross-ply laminates is shown to be related 

to the stiffness ratios of the plies. The general significance of considering ply thickness and ultimate strength as 

random variables is also demonstrated, as well as the significance of randomness in ply orientation for balanced 

and angle ply laminates. 
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. Introduction 

Laminated composite materials are prevalent in many industries for

heir high strength-to-weight ratios and flexibility in design. The contin-

ous advancement and research conducted into their mechanical behav-

or and manufacturing has resulted in the increasing usage of such mate-

ials in various applications. Their ubiquity, especially in aerospace and

eronautical engineering, requires designers to have a thorough under-

tanding of their mechanical behavior. However, due to the uncertainty

ntroduced during manufacturing the composite plies and the lami-

ated structures, a purely deterministic study can potentially be non-

onservative and insufficient. Minute variations in the physical charac-

eristics of a single ply can have disproportionally significant effects on

he ultimate strength and reliability of the laminated composite struc-

ure. 

Many variations of deterministic first-ply failure analyses have been

erformed for numerous cases. Ramtekkar et al. [1] developed a 3D

ayer-wise mixed finite element model to study composite laminated

lates, which was also extended to the analysis of laminated composite
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ylindrical panels by Rattanawangcharoen [2] . Prusty et al. [3] devel-

ped a method for predicting the failure load on laminated compos-

te stiffened panels under various loading conditions using a modified

hell analysis approach. The first-ply failure of laminated panels under

ransverse loading was also studied for both shallow and deep shells

y Prusty et al. [4] using first order shear deformation theory and the

nite element method. Pal and Ray [5] went beyond the first-ply fail-

re and studied the progressive failure analysis of composite laminates

nder transverse loads to determine the ultimate strength of the entire

aminate using shear deformation theory and the finite element method.

Experimental data on the mechanical properties of unidirectional

lass/polyester showed a coefficient of variation (CV) ranging between

0% to 20% for elastic and shear moduli as well as the material

trengths, with variation as high as 24.90% [6] . In unidirectional carbon

ber-reinforced polymers (CFRP), experimental data showed variation

s high as 13.1% for tensile strengths [7] , with less variation in other

aterial properties. More recent research [8] has shown that, while

he elastic properties of carbon fiber/epoxy composites possess a CV of

round 5%, the CV of the mechanical strength still ranges from 10% to
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0% [ 9 , 10 ]. Uncertainties in material properties obviously lead to un-

ertainties in failure loads, failure plies and/or failure modes, whether

he composite, or hybrid composite, laminates are loaded in-plane or

ut-of-plane [11–13] . 

There have been numerous studies on the effect of randomness of ma-

erial properties on composite plate mechanics. Analytical and computa-

ional models were used to analyze composite structures under various

ypes of static and dynamic loads. For example, Salim et al. [14] inves-

igated the response of composite plates subjected to static loads when

onsidering only material properties as random. By solving the poten-

ial energy equation using Navier’s method and validating their results

ith Monte Carlo simulation, they demonstrated a linear relationship

etween plate displacements and increasing material property variation.

in et al. [15] evaluated both buckling and first-ply failure probabilities

onsidering randomness in ply angle and thickness in addition to ma-

erial properties. Using the stochastic finite element method (SFEM),

alidated with a Monte Carlo simulation, they found that ply thickness

as a significant effect on laminate strength and reliability. However,

andomness of lamina strength was not considered in their research. In

000, Wu et al. [16] used the Monte Carlo approach to generate different

trengths of composite lamina. The generated strengths were then used

o compute the first-ply failure of composite laminates based on Tsai-Hill

r Tsai-Wu criteria. Onkar et al. [17] also used SFEM to analyze first-ply

ailure of composite laminates with various boundary conditions under

ransverse loads. Their analysis considered uncertainty of material prop-

rties and applied loading, but uncertainty of strength parameters and

hicknesses were not considered. 

There have also been several studies on the reliability analysis of lin-

ar and nonlinear laminated composite plates under static and dynamic

oads. For example, in 1990, Cederbaum et al. [18] presented a relia-

ility analysis of laminated plates subjected to in-plane random static

oads based on Hashin failure criterion for unidirectional fiber compos-

tes. Kam et al. [19] presented a reliability analysis of nonlinear lami-

ated composite plates using the finite element method (FEM) and limit

tate equations. Kam and Chang [20] conducted a reliability analysis

f plates subjected to first-ply failure also using limit state equations.

osling and Polit [21] used the First-Order Reliability Method (FORM)

o study shear deformable plates. By using artificial neural networks

ANN) and the Second-Order Reliability Method (SORM), Tawfik et al.

22] analyzed laminated composite plates in free vibration and included

he effect of randomness in ply thickness, demonstrating a significant ef-

ect on the probability of failure. 

The present work aims to present a comprehensive study on the over-

ll stochastic effects of ply orientation, ply thickness, and material prop-

rties and strengths on the static first-ply failure of composite laminated

lates under uniaxial loads, thus highlighting the importance of consid-

ring randomness in such properties. The primary intention of this re-

earch is to explore relative relationships between stochastic and deter-

inistic failure predictions, so the simpler classical lamination theory is

mployed as an alternative to shear deformation theories and the finite

lement method. As such, the findings of this research are most applica-

le to thin plates (i.e., aspect ratio greater than 50). Strength ratios are

lso adopted as a simple metric for determining laminate failure. The

tudy uses three different failure theories and considers various materi-

ls in various stacking sequences to investigate if a specific trend is com-

on for all materials or multiple types of stacking sequences. The results

ocus on not only failure load and probability of failure, as in the case of

any previous studies, but also on the failure ply. The paper is organized

s follows: Section 2 provides a brief overview of the classical lamina-

ion theory, and relevant failure theories. A summary of strength ratios

s also provided as it is the output of interest. Section 3 provides a brief

verview of the Monte Carlo Simulation technique as well as definitions

f relevant statistical metrics used in this work. Section 4 describes the

imulation procedure and presents a validation of the developed com-

utational code. Results and discussion are presented in Section 5 and

onclusions are summarized in Section 6 . 
𝐻  

2 
. Brief overview of the classical lamination theory 

Classical lamination theory (CLT) is a direct extension of the Kirch-

off hypothesis for plates [23] . As a well-defined and widely accepted

heory, CLT is used for the determination of the stress tensor developed

n each ply. CLT begins from the mechanics of a single orthotropic lam-

na under plane stress and proceeds to define stress and strain varia-

ions through the thickness of the laminate. The theory assumes negli-

ible shear strain perpendicular to the midplane of the laminate (i.e., a

traight line normal to the midplane remains straight and normal after

eformation), as well as negligible strain in the laminate thickness di-

ection. In addition, each lamina is considered perfectly bonded by an

nfinitesimally thin layer with no slippage between laminae. The lam-

nate essentially acts as a single layer of material. More details can be

ound in literature (for example [23] and [24] ). 

.1. Failure Theories 

There are two broad classifications of failure theories: 

Limit theories, such as the maximum stress and maximum strain

ailure theories, which compare local stress/strain components with

heir corresponding strengths, neglecting the interaction between com-

onents. 

Interaction theories, such as Tsai-Hill and Tsai-Wu, which consider

he interaction between stress components, typically by considering the

ontribution of each component to the total strain energy within the

olid body. 

.1.1. Maximum stress failure criterion 

The maximum stress failure theory is related to the maximum normal

tress theory by Rankine and the maximum shearing stress theory by

resca [24] . Global stresses are resolved to local stresses in each lamina

nd failure is predicted if any of the following inequalities are violated: 

− 

(
𝜎𝐶 1 

)
ult 
< 𝜎1 < 

(
𝜎𝑇 1 

)
ult 
, − 

(
𝜎𝐶 2 

)
ult 
< 𝜎2 < 

(
𝜎𝑇 2 

)
ult 
, 

− 

(
𝜏12 

)
ult 
< 𝜏12 < 

(
𝜏12 

)
ult 
, (1) 

here 𝜎1 , 𝜎2 and 𝜏12 are the local in-plane stress at any location on

 lamina, ( 𝜎𝑇 
𝑖 
) ult and ( 𝜎𝐶 

𝑖 
) ult are the ultimate stress in the i direction

 i = 1, 2) in tension and compression, respectively, and ( 𝜏12 ) ult is the

ltimate shear strength. 

.1.2. Tsai-Hill failure criterion 

The Tsai-Hill criterion is an interaction criterion based on the dis-

ortion energy yield criterion for isotropic materials as applied to

nisotropic materials and subsequently adapted to unidirectional lamina

24] . Failure is said to occur if the following inequality is violated: 

 

𝜎1 
𝑋 1 

) 2 
− 

( 

𝜎1 𝜎2 

𝑋 

2 
2 

) 

+ 

(𝜎2 
𝑌 

)2 
+ 

( 𝜏12 
𝑆 

)2 
< 1 , (2) 

here 

 1 = 

{ (
𝜎𝑇 1 

)
ult 

if 𝜎1 > 0 (
𝜎𝐶 1 

)
ult 

if 𝜎1 < 0 
, 𝑋 2 = 

{ (
𝜎𝑇 1 

)
ult 

if 𝜎2 > 0 (
𝜎𝐶 1 

)
ult 

if 𝜎2 < 0 
, 

 = 

{ (
𝜎𝑇 2 

)
ult 

if 𝜎2 > 0 (
𝜎𝐶 2 

)
ult 

if 𝜎2 < 0 
, 𝑆 = 

(
𝜏12 

)
ult 
. 

(3) 

.1.3. Tsai-Wu criterion 

The Tsai-Wu criterion is based on the total strain energy theory

f Beltrami and applied to lamina in plane stress [24] . Per the Mises-

encky criterion, failure is assumed to have occurred if the following

nequality is violated: 

 1 𝜎1 + 𝐻 2 𝜎2 + 𝐻 6 𝜏12 + 𝐻 11 𝜎
2 + 𝐻 22 𝜎

2 + 𝐻 66 𝜏
2 + 2 𝐻 12 𝜎1 𝜎2 < 1 , (4)
1 2 12 
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 1 = 

1 (
𝜎𝑇 1 

)
ult 

− 

1 (
𝜎𝐶 1 

)
ult 

, 𝐻 11 = 

1 (
𝜎𝑇 1 

)
ult 

(
𝜎𝐶 1 

)
ult 

, 

 2 = 

1 (
𝜎𝑇 2 

)
ult 

− 

1 (
𝜎𝐶 2 

)
ult 

, 𝐻 22 = 

1 (
𝜎𝑇 2 

)
ult 

(
𝜎𝐶 2 

)
ult 

, 

 6 = 0 , 𝐻 66 = 

1 
( 𝜏12 ) 2 ult 

, 𝐻 12 = − 

1 
2 

√ 

1 (
𝜎𝑇 1 

)
ult 

(
𝜎𝐶 1 

)
ult 

(
𝜎𝑇 2 

)
ult 

(
𝜎𝐶 2 

)
ult 

. 

(5) 

The H 12 component is the only component that cannot be determined

rom the strength parameters of the unidirectional lamina and must be

ound experimentally [24] . The Mises-Hencky criterion for H 12 provided

n Eq. (5) is an empirical suggestion and is used in this research. 

.1.4. Strength ratios 

The failure theories described in Sections 2.1.1 –2.1.3 allow one to

etect failure as a Boolean (i.e., “true ” or “false ”) value, but they provide

ery little information on how much the applied load can be increased if

he laminate is safe or decreased if the laminate fails [24] . The strength

atio is a particularly useful concept as it is applicable to any failure

heory and is accordingly used to compare all failure theories considered

n this research. The strength ratio is a simple metric defined as 

R = 

𝐹 max 
𝐹 applied 

, (6)

here F applied is the applied load and F max is the maximum load which

an be applied before the selected failure criterion is violated. 

In order to use the failure theories to calculate the strength ratios

nd the first-ply failure loads, we assume that the forces and moment

er unit length ( N x , N y , N xy , M x , M y , M yx ) applied on the composite

late are multiplied by the strength ratio (SR). 

 

𝜺 
𝐨 

𝜿

} 

= 

[ 
𝐀 

∗ 𝐁 

∗ 

𝐂 

∗ 𝐃 

∗ 

] { 

𝐍 

𝐌 

} 

SR ; where 
[ 
𝐀 

∗ 𝐁 

∗ 

𝐂 

∗ 𝐃 

∗ 

] 
= 

[ 
𝐀 𝐁 

𝐁 𝐃 

] −1 
. (7)

 

𝐨 and 𝜿𝜿 are the midplane strains and curvatures, A , B and D

atrices are the laminate’s extensional, coupling and bending stiff-

ess matrices, respectively [24] , 𝐍 = [ 𝑁 𝑥 𝑁 𝑦 𝑁 𝑥𝑦 ] 𝑇 , and 𝐌 =
 𝑀 𝑥 𝑀 𝑦 𝑀 𝑥𝑦 ] 𝑇 . 

The global strain at any height z in lamina k of the laminate can be

btained from the midplane strains and curvatures as: 

𝜺 𝐺 

)
𝑘 
= 𝜺 

𝐨 + 𝑧 𝜿 = 

(
𝜺 
𝐨 + 𝑧 𝜿

)
SR . (8) 

The local stresses at any height z in lamina k can also be obtained

s: 

𝝈𝐿 

)
𝑘 
= 𝐒 −1 

𝑘 

(
𝜺 𝐿 

)
𝑘 
= 𝐒 −1 

𝑘 

[
𝐓 

−1 
𝑘 

(
𝜺 𝐺 

)
𝑘 

]
= 𝐒 −1 

𝑘 
𝐓 

−1 
𝑘 

(
𝜺 
𝐨 + 𝑧 𝜿

)
SR, (9) 

here S k = S k ( E 11 , E 22 , G 12 , v 12 ) and T k = T k ( 𝜃k ) are the reduced com-

liance matrix and transformation matrix of ply k , respectively [24] , and

 11 , E 22 , G 12 , v 12 and 𝜃k are ply k ’s two Young’s moduli, shear modulus,

oisson’s ratio and fiber-orientation angle, respectively. So the in-plane

omponents of the local strain tensor at any height z in lamina k can be

ritten as ( 𝜎1 ) k = m k SR, ( 𝜎2 ) k = n k SR and ( 𝜏12 ) k = p k SR. Using these

xpressions of local stresses, we can obtain the strength ratio that can be

ultiplied by the applied loads to cause first-ply failure. For the maxi-

um stress failure theory, three values of strength ratios, corresponding

o the three sub-criteria, can be obtained for each ply k. The failure load

or this ply would be the minimum of these three values, and is expressed

s follows: 

R 𝑘 ( Max . Stre ss ) = min 
[ (
𝜎
𝑇 ∕ 𝐶 
1 

)
ult |𝑚 |

(
𝜎
𝑇 ∕ 𝐶 
2 

)
ult |𝑛 | ( 𝜏12 ) ult |𝑝 |

] 
, (10)

 = 

[ (
𝐸 11 𝐸 22 𝐺 12 𝑣 12 𝜃 𝑡 

)
1 ⋯ 

(
𝐸 11 𝐸 22 
𝑘 

3 
here the tensile and compressive ultimate strengths are selected ac-

ording to the local stress condition (i.e., ( 𝜎i 
T ) ult is used if m k is positive).

or Tsai-Hill and Tsai-Wu failure theories, respectively, the maximum

pplied load in lamina k can be expressed as 

R 𝑘 ( Tsai − Hill ) = 1∕ 

√ √ √ √ 

( 

𝑚 

𝑋 1 

) 2 

𝑘 

− 

( 

mn 

𝑋 

2 
2 

) 

𝑘 

+ 

(
𝑛 

𝑌 

)2 

𝑘 
+ 

(
𝑝 

𝑆 

)2 

𝑘 
, (11) 

R 𝑘 ( Tsai − Wu ) = 

− 𝐵 𝑘 + 
√
𝐵 2 
𝑘 
+4 𝐴 𝑘 

2 𝐴 𝑘 
; 𝐵 𝑘 = 𝐻 1 𝑚 𝑘 + 𝐻 2 𝑛 𝑘 + 𝐻 6 𝑝 𝑘 , 

𝐴 𝑘 = 𝐻 11 𝑚 
2 
𝑘 
+ 𝐻 22 𝑛 

2 
𝑘 
+ 𝐻 66 𝑝 

2 
𝑘 
+ 2 𝐻 12 𝑚 𝑘 𝑛 𝑘 . 

(12) 

The strength ratio for the whole laminate is then defined as the min-

mum value of SR k among all plies. 

R = min 
𝑘 

(
S R 𝑘 

)
. (13)

. Brief overview of technique and statistical metrics 

.1. Monte Carlo simulation 

Monte Carlo simulation (MCS) is a common and simple computa-

ional approach to stochastic problems. It is particularly useful in phys-

cal problems with many degrees of freedom and as such is used to gen-

rate the data used in this research. MCS involves repeated sampling of

andom variables to simulate an arbitrarily large number of experiments

nd obtain numerical results. For each trial in this study the material

roperties, material strengths ply orientations, and ply thickness form a

ector, X , of basic random variables given by 

𝑣 12 𝜃 𝑡 
)
𝑛 
( 𝜎𝑇 1 ) ult ( 𝜎𝐶 1 ) ult ( 𝜎𝑇 2 ) ult ( 𝜎𝐶 2 ) ult ( 𝜏12 ) ult 

]
. (14) 

All material properties and geometric parameters are allowed to vary

t the ply level, but for simplicity, ultimate ply strengths are assumed to

e equal for all plies in a given laminate. The vector of stochastic input

ariables X in (14) highlights the increasing complexity and uncertainty

f the laminate strength ratio as a random variable. For the type of

roblem considered in this study, a laminate of only two plies possesses

7 stochastic degrees of freedom. As the number of layers increases, the

umber of random variables increases linearly as 6n . The total number

f random variables in a laminate of n plies made of the same material

s 6 n +5 . 

.2. Probability of failure and correction factor 

The probability of failure is defined in this study as the proportion

f laminates in a simulation of N trials whose resulting strength ratio is

ess than the predicted deterministic value, SR D , and can be calculated

s 

 𝑓 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 
𝐼 
(
SR 𝑖 < SR 𝐷 

)
, (15) 

here I (SR i < SR D ) is the indicator function of laminate failure, defined

s 

 

(
SR 𝑖 ≤ SR 𝐷 

)
= 

{ 

1 if SR 𝑖 ≤ SR 𝐷 

0 if SR 𝑖 > SR 𝐷 

, (16)

nd the strength ratio, SR i , is a realization of the random variable, SR,

efined as a function of the random variable X in trial i , i.e. SR 𝑖 = SR ( 𝐗 𝑖 ) .
Defining failure probability in this way results in an issue similar

o the Boolean failure criteria in Section 2 , namely that there is little

nformation provided on the degree of the laminate failure. To address

his, the correction factor (CF) is defined as 

F = 

SR 𝐷 

SR 

, (17) 

Fail ed 
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here SR Failed is the strength ratio of the failed laminate (i.e. SR Failed 

 SR i when SR i ≥ SR D ). Hence, CF is defined only when the laminate

ails. CF can be interpreted as the factor by which the strength ratio of

 laminate must be multiplied by to reach the predicted deterministic

alue. It also provides a means to compare the relative magnitudes of

ailure between simulation trials. 

.3. The empirical distribution function and sample quantiles 

The cumulative distribution function (CDF) of a random variable, Y ,

s used to describe the distribution of that random variable. It is defined

s 

 𝑌 ( 𝑦 ) = P ( 𝑌 ≤ 𝑦 ) , 𝑦 ∈ 𝑅. (18) 

The CDF is a useful way to visualize the distribution of a random

ariable, Y , as it can be interpreted as the probability of observing a

alue less than or equal to some realization of the random variable ( y ).

ore importantly, the CDF effectively contains all information about the

andom variable and completely determines the shape of its distribution.

he CDF can be approximated by 

̂
 𝑌 ( 𝑦 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 
𝐼 
(
𝑌 𝑖 < 𝑦 

)
, (19) 

hich is also known as the empirical distribution function (EDF) [25] .

he EDF of the strength ratio can therefore be defined as 

̂
 SR ( 𝑥 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 
𝐼 
(
SR 𝑖 < 𝑥 

)
, 

min { SR } ≤ 𝑥 < max { SR } , (20) 

here min{SR} and max{SR} are the lowest and highest realizations of

he strength ratio of all trials in a given simulation. From Eq. (20) , the

efinition of the g th sample quantile follows as 

̂
 

−1 
SR ( 𝑔 ) = inf 

{
𝑥 ∶ 𝐹 SR ( 𝑥 ) ≥ 𝑔 

}
, (21) 

hich represents the value of the strength ratio or correction factor be-

eath which a proportion g of laminates falls below. For instance, if

 = 0.5 (50%), Eq. (21) would return the sample median strength ratio

r correction factor. inf{ } is the infimum function. 

. Simulation set-up and code validation 

.1. Procedure 

A MATLAB code was written to compute the strength ratios of var-

ous laminates using CLT and each of the failure theories described in

ections 2.1.1 –2.1.3 . Strength ratio data were generated using MCS for

ve different simulations which consider various combinations of ma-

erial and laminate parameters to explore the interaction effects of ran-

omness in each parameter. Coefficients of variation were held constant

or each simulation with values in the interval [0.01, 0.20] and incre-

ents of 0.01. Each simulation was repeated for 5,000 trials, resulting

n a total of 100,000 trials for each combination of laminate and ma-

erial. The random seed was reset in between simulations to isolate the

nteraction effects. The MATLAB code schematic is shown in Fig. 1 . A

ummary of simulations performed is provided in Table 1 . 

Materials examined and their corresponding mean values are sum-

arized in Table 2 . These materials were used in [24] as well. Elastic

nd shear moduli are given in units of GPa and strengths are given in

Pa. Ply thickness is given in meters. The standard deviations of all ma-

erial properties are defined in the MATLAB code as functions of their

ean values and CV. An exception is made for the ply orientation, whose

tandard deviation is assumed to have a maximum of 1.8 ○ at the upper

ound of simulated CV values and varies linearly with CV (e.g., the de-

iation is 0.9 ○ for CV = 0.10) as in [22] . 
4 
Experimental data from Maekawa [7] regarding material properties

f unidirectional carbon fiber-reinforced laminates shows that the dis-

ribution of basic material parameters can be closely approximated by

 Gaussian or normal distribution. Using the Kolmogorov-Smirnov test,

ekou and Philippidis [6] showed that the assumption of normally dis-

ributed mechanical properties for unidirectional glass/polyester cannot

e rejected at the 5% significance level. Thus, the assumption of nor-

ally distributed material properties, strengths, ply thicknesses, and ply

rientations for the present analysis is valid. 

.2. Code validation 

The CLT analysis coded in MATLAB considers a square plate of unit

ength subjected to a pure tensile load of in the global x -direction (i.e.,

 𝑥 = 1 𝑁∕ 𝑚, 𝑁 𝑦 = 𝑁 xy = 𝑀 𝑥 = 𝑀 𝑦 = 𝑀 xy = 0 ). Given this loading con-

ition, the strength ratios reported in this research are equivalent to the

rst-ply failure loads. Table 3 lists the various laminates considered in

his research. 

First-ply failure load results were validated against literature [24] for

 [0 90 0] graphite/epoxy laminate subjected to a unidirectional tensile

oad in the x -direction with ply thicknesses of 5 mm. Tsai-Wu strength

atios for each ply at various elevations of the ply are shown in Table 4 ,

hich demonstrates complete agreement with the developed MATLAB

ode. Results for other failure theories show similar agreement and are

ot shown. 

First-ply failure load results were also validated against a converged

nite element model created on a commercial finite element analysis

oftware (SolidWorks Simulation 2019 Package). Laminates are mod-

led as square planes with unit area and the bottom left corner is fixed

t the origin of the global coordinate system as shown in orange in Fig. 2 .

ranslation at the left and bottom edges is restricted in the perpendicu-

ar direction and rotation is restricted about the z- axis and in the edge

irection. The top and right edges are free and the default mesh size is

sed. 

Results of the finite element analysis are summarized in Table 5 ,

hich shows a good agreement between the results of the MATLAB code

nd the commercial software both in terms of the calculated first-ply

ailure load and the predicted failure ply. In particular, the results of

he cross-ply laminate are identical. Deviation occurs with non-cross-

ly laminates due to the difference in analysis technique, namely the

ropagation of element-wise coupling effects in using the finite element

ethod. Values for these laminates reported in Table 5 are median val-

es on the midplane and were manually retrieved from the raw Solid-

orks simulation data. It is also noted that for laminates 2 and 5, the

imit and interaction failure theories result in different predicted failure

ly which are all correctly determined by the MATLAB code. 

. Results and discussion 

.1. Strength ratio coefficient of variation 

Figs. 3–7 show an increasing strength ratio coefficient of variation

CV(SR)) with input coefficient of variation (CV( X )) for all laminates

onsidered in this study. The figures again demonstrate the validity of

he MATLAB code as similar conclusions were drawn for both cross-

ly and non-cross-ply laminates in [14] and [22] . It is apparent that

he linear increase in natural frequency and displacement coefficients

f variation found in [14] and [22] is also mirrored for the strength

atio. 

Table 6 provides a summary of linear fit slopes for all combinations

f stacking sequence, material, and simulation. Across all laminates and

aterials, the average slope is 1.2402 when considering all material

roperties and parameters as random. This indicates that across all sim-

lations, each unit change in CV( X ) results in a 24% greater response in

he CV(SR) which is significantly disproportionate. All linear fits are cor-

elated with an average minimum correlation coefficient of 0.997 across
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Fig. 1. MATLAB code flow chart. 

Table 1 

List of simulations performed. 

Simulation Random parameters 

1 Material properties only 

2 Material properties and ply orientation 

3 Material properties and ply thickness 

4 Material properties, ply orientation, and ply thickness 

5 Material properties, ply orientation, ply thickness and material strengths 

Table 2 

Mean material properties and parameters. 

Material E 
11 

E 
22 

G 

12 
𝝊

12 
( 𝜎𝑇 1 ) 𝑢𝑙𝑡 ( 𝜎𝐶 1 ) 𝑢𝑙𝑡 ( 𝜎𝑇 2 ) 𝑢𝑙𝑡 ( 𝜎𝐶 2 ) 𝑢𝑙𝑡 ( 𝜏12 ) 𝑢𝑙𝑡 𝚫𝜽 t 

Graphite/epoxy 181 10.30 7.17 0.28 1500 1500 40 246 68 0.0 0 0.005 

Glass/epoxy 38.6 8.27 4.14 0.26 1062 610 31 118 72 0.0 0 0.005 

Boron/epoxy 204 18.50 5.59 0.23 1260 2500 61 202 67 0.0 0 0.005 

Fig. 2. Solidworks model with boundary con- 

ditions, load, and mesh. 

Fig. 3. Coefficients of variation: Input variables vs. Tsai-Wu strength ratios, Laminate 1 (M.P. means Material Properties). 

5 
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Table 3 

List of studied laminates. 

Laminate Type of laminate Stacking Sequence 

1 Cross-ply, unsymmetric [0 90 90 0 90 90 0 0] T 
2 Balanced [30 40 -30 30 -30 -40] T 
3 Angle-ply, balanced [-40 40 -40 40] T 
4 Angle-ply, symmetric [-40 40 –40 40 -40] T 
5 Antisymmetric, balanced [45 60 -60 -45] T 

Table 4 

Comparison of Tsai-Wu strength ratios for [0 90 0] 

graphite/epoxy laminate. 

Ply Number Position Kaw [24] MATLAB Δ% 

1 Top 1.339E + 07 1.339E + 07 0.00 

Middle 1.339E + 07 1.339E + 07 0.00 

Bottom 1.339E + 07 1.339E + 07 0.00 

2 Top 7.277E + 06 7.277E + 06 0.00 

Middle 7.277E + 06 7.277E + 06 0.00 

Bottom 7.277E + 06 7.277E + 06 0.00 

3 Top 1.339E + 07 1.339E + 07 0.00 

Middle 1.339E + 07 1.339E + 07 0.00 

Bottom 1.339E + 07 1.339E + 07 0.00 
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Table 6 

Trendline slopes: CV(SR Tsai-Wu ) vs. CV( X ). 

Graphite/epoxy 

Laminate Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 

1 0.8704 0.8619 1.0405 1.0304 1.4125 

2 0.6588 0.7074 0.8715 0.9079 1.3037 

3 0.387 0.5008 0.6468 0.7244 1.2326 

4 0.3977 0.4855 0.6005 0.6627 1.2148 

5 0.3053 0.3399 0.6021 0.6216 1.0536 

Glass/epoxy 

Laminate Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 

1 0.74146 0.73981 0.87852 0.87668 1.333 

2 0.7926 0.8132 0.9703 0.9847 1.2812 

3 0.6386 0.711 0.888 0.9382 1.2718 

4 0.4936 0.5819 0.6986 0.7596 1.1748 

5 0.4297 0.436 0.6663 0.6707 1.1551 

Boron/epoxy 

Laminate Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 

1 0.84001 0.83257 1.0019 0.99231 1.3718 

2 0.612 0.6914 0.8389 0.8944 1.244 

3 0.4023 0.5396 0.6517 0.7486 1.2507 

4 0.3991 0.5118 0.603 0.6837 1.2252 

5 0.3573 0.3567 0.6195 0.6203 1.0786 
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ll laminates and simulations. Only values for Tsai-Wu failure theory are

hown as other failure theories generate nearly identical results. 

Table 6 also indicates that the slope magnitudes are heavily depen-

ent on stacking sequence. For simulation 5, the CV(SR) of laminate 5

xhibits an average slope of 1.0958 across all materials while the aver-

ge for laminate 1 is 1.3725. In other words, the response of CV(SR) is

nly 9.58% higher for each unit change of CV( X ) for laminate 5 com-

ared 37.25% for laminate 1 – nearly four times greater an effect. This

ifference in behavior between laminates 1 and 5 is explored in more

epth in Section 5.5 , where it is shown that increasing CV( X ) results

n different first-ply failures. For laminate 1, this behavioral change po-

entially result in higher strength ratios, which is not typically true for

aminate 5. Because CV(SR) describes the dispersion of strength ratios

elative to the mean value, CV(SR) is greater for laminate 1. 

In their paper, Tawfik et al. [22] found that ply angle randomness

as negligible for a [0 90] cross-ply laminate but significant for a [0 45 -

5 90] laminate, which shows a dependence on stacking sequence when

onsidering ply angle individually as a random variable. Figs. 4–6 con-

rm this for non-cross-ply laminates. Laminate 5 ( Fig. 7 ) does not show

his significance, suggesting that, similar to cross-ply laminates, the ef-

ect of randomness in the ply angle is not significant for anti-symmetric

aminates. 
Table 5 

Comparison of SolidWorks model and MATLAB

First-ply failure load 

Laminate Theory SolidWorks MATL

1 Max. Stress 1.236E + 07 1.236

Tsai-Hill 1.236E + 07 1.236

Tsai-Wu 1.235E + 07 1.235

2 Max. Stress 6.987E + 06 7.140

Tsai-Hill 6.688E + 06 6.746

Tsai-Wu 6.217E + 06 6.075

3 Max. Stress 3.149E + 06 3.192

Tsai-Hill 3.140E + 06 3.184

Tsai-Wu 3.096E + 06 3.113

4 Max. Stress 4.071E + 06 4.076

Tsai-Hill 4.051E + 06 4.057

Tsai-Wu 4.190E + 06 4.187

5 Max. Stress 1.427E + 06 1.368

Tsai-Hill 1.263E + 06 1.220

Tsai-Wu 1.184E + 06 1.133

6 
Independent of stacking sequence, material, and failure theory, the

reatest effect on CV(SR) is due to thickness as found in [15] and

22] , and material strength, whose importance was highlighted but not

ested in [15] . The importance of thickness was also reported by Go-

ari et al. [26] , who found that slight changes in shell lay-up thickness

aused considerable fluctuations in failure strength. Subsequent studies

n Sections 5.2 through 5.5 are performed for simulation 5 (all parame-

ers random) unless otherwise noted. 

.2. Probability of failure 

Fig. 8 shows the convergence of the Monte Carlo simulation results

or laminate 3, which converges to less than 1% relative error for all nine

ombinations of material and failure theory, averaged over all values of

V. As convergence studies for all other laminates return similar results,

he figure shown is specifically for laminate 3 since glass/epoxy under

he Maximum Stress criterion demonstrated the most distinct behavior

elative to any other laminate. Regardless, mean error for all laminates

onverges to below 1.5% for 5000 trials, demonstrating that 5000-trials

s a suitable stopping point. 

Figs. 9–13 show the probability of failure for the five considered

aminates in three materials using all considered failure theories. It can
 code solutions. 

(N/m) Failed Ply 

AB Δ% SolidWorks MATLAB 

E + 07 0.00 2 2 

E + 07 0.00 2 2 

E + 07 0.00 2 2 

E + 06 -2.19 1 1 

E + 06 -0.87 6 6 

E + 06 2.28 6 6 

E + 06 -1.37 4 4 

E + 06 -1.39 4 4 

E + 06 -0.54 4 4 

E + 06 -0.13 3 3 

E + 06 -0.15 3 3 

E + 06 0.07 3 3 

E + 06 4.17 2 2 

E + 06 3.40 1 1 

E + 06 4.28 1 1 
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Fig. 4. Coefficients of variation: Input variables vs. Tsai-Wu strength ratios, Laminate 2. 

Fig. 5. Coefficients of variation: Input variables vs. Tsai-Wu strength ratios, Laminate 3. 

Fig. 6. Coefficients of variation: Input variables vs. Tsai-Wu strength ratios, Laminate 4. 
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e concluded that failure probability is generally non-linear and highly

ependent on the combination of stacking sequence, failure theory, and

aterial. Failure is much less predictable for non-cross-ply laminates,

ikely because there is a greater influence of randomness when there

re additional coupling effects due to the different stacking sequences. 

The dependence of failure probability on the particular combination

f design factors is highlighted in Figs. 10–13 , which indicate significant

nteraction between failure theory, material, and stacking sequence. In

articular, Fig. 11 shows considerably different behavior for glass/epoxy
7 
nder the maximum stress failure criterion. This is a contrary to the de-

erministic cases studied by Rattanawangcharoen [2] and Reddy and

andey [27] , who concluded that all failure criteria are equivalent in

redicting failure of laminates subjected to in-plane loads. While there

re several scenarios in which failure theories are in close agreement,

here are more cases where they exhibit very different behavior; as re-

orted by Lopez et al. [28] , no criterion is always the most or least

onservative, which highlights the caution that must be exercised in se-

ecting a failure criterion. 
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Fig. 7. Coefficients of variation: Input variables vs. Tsai-Wu strength ratios, Laminate 5. 

Fig. 8. Mean relative error for Monte Carlo simulations at 500 trial increments, 

Laminate 3. 
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.3. Correction factor 

Fig. 14 shows a strong, positive correlation between the mean cor-

ection factor and CV( X ). The mean is chosen because it is less robust to
Fig. 9. Probability of Failure: The

8 
utliers than the median and is therefore a more conservative measure.

he correction factor is generally less dependent on the combination of

tacking sequence, failure theory, and material than the probability of

ailure. 

Table 7 provides a comprehensive summary of the linear fit slopes

or all laminate, material, and failure theory combinations, which are

ll correlated with an average minimum correlation factor of 0.993. 

For almost any laminate and material combination there is a gen-

ral agreement in the mean correction factor between all failure theo-

ies, which is why most figures are omitted. Laminate 3 is an exception,

owever, showing a relatively more extreme response of the mean CF

or glass/epoxy under the maximum stress failure theory. This is un-

oubtedly connected to the distinct failure probability shown in Fig. 11

middle), but also indicates that, for this combination of failure theory,

aterial, and stacking sequence, laminates which do not meet the de-

erministic value simultaneously miss it by relatively larger margins. 

From Table 7 , the slope for Laminate 3 in this case is seen to be

.7079, which means that for every 1% increase in CV( X ) there is a

orresponding additive increase of 2.7% to the mean correction factor.

s with the strength ratio, CV( X ) for laminate 5 seems to exhibit a lesser

agnitude of effect on the mean correction factor. Laminate 1 shows an

verage slope of 2.0125 across all failure theories for graphite/epoxy,

hile laminate 5 is only 1.6302. 

Fig. 15 shows the EDF of the Tsai-Wu and maximum stress factors

f safety for laminates 1 and 3, respectively. The EDFs for other lam-

nate/theory combinations are nearly identical and are thus omitted.

able 8 summarizes sample quantiles for mean correction factor for
ory comparison, Laminate 1. 
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Fig. 10. Probability of Failure: Theory comparison, Laminate 2. 

Fig. 11. Probability of Failure: Theory comparison, Laminate 3. 

Fig. 12. Probability of Failure: Theory comparison, Laminate 4. 

Table 7 

Mean CF Tsai-Wu vs. CV( X ): Trendline slopes. 

Graphite/epoxy Glass/epoxy Boron/epoxy 

Laminate Max. Stress Tsai-Hill Tsai-Wu Max. Stress Tsai-Hill Tsai-Wu Max. Stress Tsai-Hill Tsai-Wu 

1 2.0088 2.0141 2.0147 1.8566 1.8569 1.8495 1.9713 1.9753 1.9783 

2 1.8556 1.8423 1.6893 1.8058 1.5102 1.4700 1.9619 1.9229 1.8418 

3 1.8308 1.8572 1.8257 2.7079 1.8100 1.7637 1.8622 1.8803 1.9698 

4 1.8979 1.8925 2.0056 2.0994 1.9897 1.9816 1.9128 1.8893 2.0468 

5 1.8439 1.5823 1.4643 1.6817 1.6251 1.5946 1.6358 1.5372 1.5451 

9 
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Fig. 13. Probability of Failure: Theory comparison, Laminate 5. 

Fig. 14. Correction factor: Theory comparison, Laminate 3. 

Fig. 15. Correction factor EDF: Graphite/Epoxy, Laminate 1 (left); Glass/Epoxy, Laminate 3 (right). 

o  

d  

s  

u  

w  

w  

t  

t  

F  

s  

e  

r

nly one combination of material and failure theory. These EDFs clearly

emonstrate that the sample quantiles of the factors of safety increase

ignificantly with CV( X ). For laminate 1 of graphite/epoxy, 90% of sim-

lated laminates have a correction factor less than or equal to 1.1269

hen CV( X ) is 0.05, but 1.7474 when CV( X ) is 0.20. In other words,

ith CV = 0.05, 90% of laminates must be designed up to 13% stronger
10 
o ensure the expected deterministic strength ratio is attained, compared

o 75% when considering CV = 0.20 – a difference nearly 6 times greater.

or glass/epoxy laminate 3, the disparity is even more pronounced as

hown in Fig. 15 (right). These results agree with the findings of Khasaba

t al. [29] , who concluded that there is a large penalty paid to gain high

eliability. 
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Table 8 

CF Tsai-Wu : Sample quantiles (graphite/epoxy). 

90th 95th 99th 

Laminate CV = 0.05 CV = 0.10 CV = 0.20 CV = 0.05 CV = 0.10 CV = 0.20 CV = 0.05 CV = 0.10 CV = 0.20 

1 1.1269 1.2829 1.7474 1.1622 1.3573 1.9955 1.2282 1.5124 2.7212 

2 1.0976 1.231 1.6358 1.13 1.2983 1.8319 1.1923 1.4211 2.2885 

3 1.1139 1.2592 1.6679 1.1408 1.3219 1.8589 1.1915 1.4497 2.3959 

4 1.1399 1.316 1.7773 1.169 1.3901 1.9983 1.2224 1.5437 2.4876 

5 1.0912 1.2098 1.5283 1.1148 1.2596 1.6818 1.1586 1.3734 2.0943 

Fig. 16. Tsai-Wu first-ply failure load: EDF, Laminate 1. 

Fig. 17. Failure ply distributions, Graphite/epoxy, Laminate 1. 
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.4. Strength ratio empirical distribution functions 

Fig. 16 shows the EDFs of the Tsai-Wu strength ratios for laminate

 with varying degrees of CV( X ). In all cases, there is an increasing

ariation in the strength ratio as CV( X ) increases, as indicated by the

idening shapes of the EDFs, similar to the mean factors of safety. The

DFs of other simulations are nearly identical and are thus omitted. 

.5. Failure Ply 

Figs. 17–20 show the distribution of failure plies for various magni-

udes of CV( X ). The distributions for most combinations of material and

ailure theories are nearly identical and are thus omitted. Independent

f the combination of stacking sequence, material, and failure theory,

he variation in the failure ply increases with CV( X ). 
11 
Interaction theories appear to be particularly sensitive to the increas-

ng variation since they consider all components of stress. Laminates 4

nd 5 which are symmetric and anti-symmetric laminates, respectively,

lso appear to have symmetric failure ply distributions. In addition, the

eterministic plies predicted by CLT fail with the highest empirical prob-

bility, but that probability is not as pronounced as for laminate 1. For

nstance, in the case of laminate 5, the ply opposite to the deterministic

ailed ply about the midplane fails with essentially equal probability,

ven for the smallest displayed value of CV. This is true for both maxi-

um stress and Tsai-Wu failure theories. 

Although graphite/epoxy and boron/epoxy exhibit similar failure

ly distributions in almost all scenarios, glass/epoxy tends to have more

istinct behavior as demonstrated by comparing Figs. 19 and 20 . For ex-

mple, for graphite/epoxy at CV = 0.05, the failure ply distribution for

sai-Wu predicts most failures to happen in plies 1 and 4, with fewer
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Fig. 18. Failure ply distributions, Graphite/epoxy, Laminate 4. 

Fig. 19. Failure ply distributions, Graphite/epoxy, Laminate 5. 

Fig. 20. Failure ply distributions, Glass/epoxy, Laminate 5. 

12 
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Table 9 

Median stiffness ratios (Max. Stress Failure Ply), Laminate 1. 

Material Failure Ply g (E 1 /E 2 ) Ply 2 (E 1 /E 2 ) Ply 3 (E 1 /E 2 ) Ply 5 (E 1 /E 2 ) Ply 6 

Graphite/epoxy 2 ∗ 63.3% 17.236 17.797 17.612 17.605 

3 26.0% 18.774 16.19 17.767 17.647 

5 6.75% 19.332 18.968 14.864 17.954 

6 3.72% 19.568 18.989 18.459 14.68 

Glass/epoxy 2 ∗ 59.0% 4.5685 4.7299 4.6851 4.6759 

3 27.7% 4.9511 4.3143 4.7266 4.6993 

5 8.33% 5.0688 4.9749 4.0014 4.7951 

6 5.00% 5.0655 5.0122 4.9115 3.9261 

Boron/epoxy 2 ∗ 62.1% 10.811 11.173 11.051 11.047 

3 26.5% 11.773 10.182 11.155 11.104 

5 6.91% 12.125 11.885 9.4052 11.297 

6 3.81% 12.134 11.898 11.568 9.1847 

∗ deterministic failure ply 

Table 10 

Median stiffness ratios (Max. Stress Failure Ply), Laminate 5. 

Material Failure Ply g (E 1 /E 2 ) Ply 1 (E 1 /E 2 ) Ply 2 (E 1 /E 2 ) Ply 3 (E 1 /E 2 ) Ply 4 

Graphite/epoxy 1 17.8% 16.407 18.621 17.966 17.539 

2 ∗ 31.8% 17.904 16.786 17.828 17.603 

3 32.2% 17.611 17.815 16.784 17.911 

4 18.2% 17.609 17.959 18.655 16.419 

Glass/epoxy 1 5.38% 4.1323 5.4336 5.0449 4.5788 

2 ∗ 44.6% 4.7356 4.497 4.7798 4.6338 

3 44.6% 4.6311 4.7746 4.4977 4.7353 

4 5.36% 4.5964 5.0377 5.4632 4.1707 

Boron/epoxy 1 4.54% 9.6411 12.746 12.287 10.931 

2 ∗ 45.4% 11.155 10.596 11.347 10.972 

3 45.5% 10.969 11.332 10.59 11.151 

4 4.60% 10.963 12.29 12.722 9.6632 

∗ deterministic failure ply 
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bservations in plies 2 and 3. The same plot for glass/epoxy is almost in-

erted, with nearly all failures occurring in plies 2 and 3. This difference

n behavior is likely related to the differences in the stiffness ratios for

ach material, whose deterministic values are 17.573, 4.667, and 11.027

or graphite/epoxy, glass/epoxy, and boron/epoxy, respectively. 

The failure ply and median stiffness ratios ( E 1 / E 2 ) for laminates 1

nd 5 can be found in Tables 9 and 10 , which also provide the respec-

ive proportion of laminates through all 100,000 simulations in the third

olumn as g , expressed as a percentage (i.e. g = count/100,000 × 100).

hese tables indicate that the median stiffness ratio is always lowest

or the corresponding failed ply. Additionally, the median stiffness ra-

ios for the cross-ply laminate (laminate 1) are higher in every instance

here the failed ply changes. For example, for graphite/epoxy, in sce-

arios where ply 3 fails instead of the deterministic ply 2, the median

tiffness ratio of ply 2 increased from 17.236 to 18.774, as shown in

able 9 . In the less-common event that ply 5 fails, the median stiffness

atio of ply 2 increases further to 19.332. Moreover, the values of the

edian stiffness ratio for each scenario decreases with the likelihood

f that particular ply failing (i.e., for graphite/epoxy failure plies 2, 3,

, 6, whose empirical probabilities of failing are 0.63, 0.26, 0.068, and

.037, the median stiffness ratios of the failure plies are 17.236, 16.190,

4.864, 14.680, respectively, as highlighted in bold in the table). A sim-

lar pattern is seen for laminate 5, though the overall behavior differs as

hown in Fig. 20 and Table 10 . 

This suggests a sequential order to scenarios in which ply failures

iffer from the deterministic prediction; in order for a different ply

o fail, not only must that ply have a lower stiffness ratio relative to

he deterministic value, but the deterministic ply must simultaneously

ave a higher stiffness ratio. This also suggests that cross-ply lami-

ates with failure plies different from what deterministic analysis pre-

icts should accordingly have higher first-ply failure loads. This can be

een in Fig. 21 , which shows a plot of laminate median SR max.stress for

raphite/epoxy and glass/epoxy, grouped by the failure ply – each of the
13 
 lines in any plot represents an aggregate of the strength ratio for lam-

nates with the failed plies designated by the legend. For example, the

urple line in Fig. 21 shows, for any given CV( X ), the median SR max.stress 

or laminates whose first failed ply is ply 6. 

The deterministic failure ply (ply 2) has the lowest median strength

atio, followed by plies 3, 5, and 6. While laminates with failure plies

ther than the deterministic prediction do, in fact, correspond to higher

trength ratios, it is worth reiterating that they are less likely to fail. This

s particularly true for lower values of CV( X ), as there is not enough vari-

tion in the input variables for a surprising outcome. For example, for

aminate 1 of graphite/epoxy in Table 9 , the deterministic ply fails in the

ajority (63.3%) of the total number of trials. This is also demonstrated

n Fig. 21 for graphite/epoxy plies 5 and 6, for which no observations

re seen for CV( X ) less than 0.04. This pattern of sequentially increas-

ng strength ratios is shown for both materials in Fig. 21 , which is also

eflected by the failure ply distribution in Fig. 17 (left). 

Laminate 5 exhibits similar behavior, as shown in Fig. 22 , which

hows similar information as Fig. 21 , but for Laminate 5. For

raphite/epoxy, median strength ratios corresponding to the failure of

lies 1 and 4 are indeed higher than the deterministic ply, but the dif-

erence is much less pronounced than for laminate 1. For ply 3, which

s equally likely to fail as ply 2, there does not appear to be a significant

ifference. By comparing the graphite/epoxy plot in Fig. 22 (left) to the

ailure ply distributions in Fig. 19 (left) and empirical probabilities in

able 10 , it can be seen that the differences in occurrence are less ex-

reme than for laminate 1, which helps to explain why there is also a

esser difference between the strength ratios of different failure plies.

urthermore, unlike laminate 1, with which all materials had nearly

dentical failure ply distributions, laminate 5 glass/epoxy exhibits much

ifferent behavior between failure plies than graphite/epoxy. This be-

avior also mirrors the failure ply distributions shown in Fig. 20 – a more

ronounced difference in the empirical probability results in a more pro-

ounced increase in strength ratio. The different behavior in materials
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Fig. 21. Median SR max.stress by failed ply, Laminate 1. 

Fig. 22. Median SR max.stress by failed ply, Laminate 5. 
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D

s likely due to the innate difference in stiffness ratios between graphite

nd glass/epoxy as well as a difference in coupled behavior and stress

istribution due to stacking sequence. The behavior exhibited by lami-

ates 1 and 5 is not shared by laminates 2, 3, and 4, whose stiffness ratios

re accordingly not shown. In fact, there does not appear to be any pat-

ern in the stiffness ratios and the ply failures for these laminates, likely

ue to the contrast of coupling effects of the different laminate stacking

equences. 

. Conclusions 

The stochastic effects on the response of composite laminated plates

nder static unidirectional tensile loading were investigated in this work

y exploring the data generated via Monte Carlo simulation. The impor-

ance of considering randomness in the first-ply failure analysis of com-

osite laminates is highlighted by the disproportionate response of coef-

cient of variation of strength ratio, CV(SR), to coefficient of variation of

ll material and geometric parameters, CV( X ), with an emphasis on ply

hickness and lamina strengths. Ply angle randomness is significant for

alanced and angle-ply laminates, but not cross-ply and anti-symmetric

aminates. A linear relationship between coefficient of variation of all

nput variables and both the strength ratio coefficient of variation and

ean correction factor is demonstrated. The slope of the linear rela-

ionship is highly dependent on the combination of stacking sequence,

aterial, and failure theory. Probability of failure is generally nonlinear,

nd no failure theory was found to always return the most or least con-

ervative value. In general, there is an increasingly large penalty paid to

nsure that a laminate meets the expected deterministic strength ratio,

nd this penalty increases with CV( X ). 
14 
Failure plies predicted by deterministic analysis are often inaccu-

ate when considering randomness in material properties and laminate

arameters, though this accuracy is dependent on stacking sequence.

or symmetric and antis-symmetric laminates, failure ply distributions

eveal that the empirical probability of occurrence is virtually equiv-

lent for both the deterministic ply and the opposite ply about the

idplane of the laminate. In the case of cross-ply and anti-symmetric

aminates, the failed ply has the lowest stiffness ratio. For cross-ply

aminates in particular, there appears to be a sequential order to un-

xpected ply failures, which ultimately correspond to a higher first-ply

ailure load. 

This paper demonstrated the nonlinearity of probability of failure of

omposite laminates, and the dependence of failure ply on the random-

ess of the laminate’s material and geometric parameters. Divergence

rom deterministic, or expected, failure ply may or may not necessarily

ffect the strength ratio in a positive way. These findings underscore the

mportance of considering randomness in every available factor of the

esign of composite laminates: stacking sequence, material selection,

nd failure theory selection, among others. A few natural extensions of

his research include, but are not limited to, the application of shear

eformation theory, the consideration of hygrothermal effects, out-of-

lane loading, and employing the full discount method to analyze be-

avior beyond first-ply failure. These extensions will be the subject of

ubsequent research. 
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