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This paper highlights the amount of risk taken when a deterministic approach is used in designing composite
structures without consideration of stochastic effects. The study treats all material and geometric parameters of
the composite laminated plates under investigation as stochastic. Monte Carlo simulation is employed to inves-
tigate the stochastic effects of material properties, ply thickness, and ply orientation on the failure of laminated
composite plates under static loads. Classical lamination theory is used to calculate the strength ratios using
maximum stress, Tsai-Hill, and Tsai-Wu failure criteria for plates of three different materials in various stacking
sequences. Variation in the failure ply distributions are shown to increase with coefficient of variation of the input
variables. A positive linear trend between the coefficients of variation of the strength ratio and input variables
is found, whose slope increases as randomness is considered for more input variables. Probability of failure and
failure ply distributions are shown to be heavily dependent on the combination of laminate stacking sequence,
material, and failure probability. In particular, while the empirical failure probability for cross-ply laminates is
highest for the ply predicted by a deterministic analysis, this probability decreases rapidly with increasing vari-
ation in input parameters. Further, the failure of unexpected plies for cross-ply laminates is shown to be related
to the stiffness ratios of the plies. The general significance of considering ply thickness and ultimate strength as
random variables is also demonstrated, as well as the significance of randomness in ply orientation for balanced

and angle ply laminates.

1. Introduction

Laminated composite materials are prevalent in many industries for
their high strength-to-weight ratios and flexibility in design. The contin-
uous advancement and research conducted into their mechanical behav-
ior and manufacturing has resulted in the increasing usage of such mate-
rials in various applications. Their ubiquity, especially in aerospace and
aeronautical engineering, requires designers to have a thorough under-
standing of their mechanical behavior. However, due to the uncertainty
introduced during manufacturing the composite plies and the lami-
nated structures, a purely deterministic study can potentially be non-
conservative and insufficient. Minute variations in the physical charac-
teristics of a single ply can have disproportionally significant effects on
the ultimate strength and reliability of the laminated composite struc-
ture.

Many variations of deterministic first-ply failure analyses have been
performed for numerous cases. Ramtekkar et al. [1] developed a 3D
layer-wise mixed finite element model to study composite laminated
plates, which was also extended to the analysis of laminated composite
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cylindrical panels by Rattanawangcharoen [2]. Prusty et al. [3] devel-
oped a method for predicting the failure load on laminated compos-
ite stiffened panels under various loading conditions using a modified
shell analysis approach. The first-ply failure of laminated panels under
transverse loading was also studied for both shallow and deep shells
by Prusty et al. [4] using first order shear deformation theory and the
finite element method. Pal and Ray [5] went beyond the first-ply fail-
ure and studied the progressive failure analysis of composite laminates
under transverse loads to determine the ultimate strength of the entire
laminate using shear deformation theory and the finite element method.

Experimental data on the mechanical properties of unidirectional
glass/polyester showed a coefficient of variation (CV) ranging between
10% to 20% for elastic and shear moduli as well as the material
strengths, with variation as high as 24.90% [6]. In unidirectional carbon
fiber-reinforced polymers (CFRP), experimental data showed variation
as high as 13.1% for tensile strengths [7], with less variation in other
material properties. More recent research [8] has shown that, while
the elastic properties of carbon fiber/epoxy composites possess a CV of
around 5%, the CV of the mechanical strength still ranges from 10% to
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20% [9,10]. Uncertainties in material properties obviously lead to un-
certainties in failure loads, failure plies and/or failure modes, whether
the composite, or hybrid composite, laminates are loaded in-plane or
out-of-plane [11-13].

There have been numerous studies on the effect of randomness of ma-
terial properties on composite plate mechanics. Analytical and computa-
tional models were used to analyze composite structures under various
types of static and dynamic loads. For example, Salim et al. [14] inves-
tigated the response of composite plates subjected to static loads when
considering only material properties as random. By solving the poten-
tial energy equation using Navier’s method and validating their results
with Monte Carlo simulation, they demonstrated a linear relationship
between plate displacements and increasing material property variation.
Lin et al. [15] evaluated both buckling and first-ply failure probabilities
considering randomness in ply angle and thickness in addition to ma-
terial properties. Using the stochastic finite element method (SFEM),
validated with a Monte Carlo simulation, they found that ply thickness
has a significant effect on laminate strength and reliability. However,
randomness of lamina strength was not considered in their research. In
2000, Wu et al. [16] used the Monte Carlo approach to generate different
strengths of composite lamina. The generated strengths were then used
to compute the first-ply failure of composite laminates based on Tsai-Hill
or Tsai-Wu criteria. Onkar et al. [17] also used SFEM to analyze first-ply
failure of composite laminates with various boundary conditions under
transverse loads. Their analysis considered uncertainty of material prop-
erties and applied loading, but uncertainty of strength parameters and
thicknesses were not considered.

There have also been several studies on the reliability analysis of lin-
ear and nonlinear laminated composite plates under static and dynamic
loads. For example, in 1990, Cederbaum et al. [18] presented a relia-
bility analysis of laminated plates subjected to in-plane random static
loads based on Hashin failure criterion for unidirectional fiber compos-
ites. Kam et al. [19] presented a reliability analysis of nonlinear lami-
nated composite plates using the finite element method (FEM) and limit
state equations. Kam and Chang [20] conducted a reliability analysis
of plates subjected to first-ply failure also using limit state equations.
Gosling and Polit [21] used the First-Order Reliability Method (FORM)
to study shear deformable plates. By using artificial neural networks
(ANN) and the Second-Order Reliability Method (SORM), Tawfik et al.
[22] analyzed laminated composite plates in free vibration and included
the effect of randomness in ply thickness, demonstrating a significant ef-
fect on the probability of failure.

The present work aims to present a comprehensive study on the over-
all stochastic effects of ply orientation, ply thickness, and material prop-
erties and strengths on the static first-ply failure of composite laminated
plates under uniaxial loads, thus highlighting the importance of consid-
ering randomness in such properties. The primary intention of this re-
search is to explore relative relationships between stochastic and deter-
ministic failure predictions, so the simpler classical lamination theory is
employed as an alternative to shear deformation theories and the finite
element method. As such, the findings of this research are most applica-
ble to thin plates (i.e., aspect ratio greater than 50). Strength ratios are
also adopted as a simple metric for determining laminate failure. The
study uses three different failure theories and considers various materi-
als in various stacking sequences to investigate if a specific trend is com-
mon for all materials or multiple types of stacking sequences. The results
focus on not only failure load and probability of failure, as in the case of
many previous studies, but also on the failure ply. The paper is organized
as follows: Section 2 provides a brief overview of the classical lamina-
tion theory, and relevant failure theories. A summary of strength ratios
is also provided as it is the output of interest. Section 3 provides a brief
overview of the Monte Carlo Simulation technique as well as definitions
of relevant statistical metrics used in this work. Section 4 describes the
simulation procedure and presents a validation of the developed com-
putational code. Results and discussion are presented in Section 5 and
conclusions are summarized in Section 6.
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2. Brief overview of the classical lamination theory

Classical lamination theory (CLT) is a direct extension of the Kirch-
hoff hypothesis for plates [23]. As a well-defined and widely accepted
theory, CLT is used for the determination of the stress tensor developed
in each ply. CLT begins from the mechanics of a single orthotropic lam-
ina under plane stress and proceeds to define stress and strain varia-
tions through the thickness of the laminate. The theory assumes negli-
gible shear strain perpendicular to the midplane of the laminate (i.e., a
straight line normal to the midplane remains straight and normal after
deformation), as well as negligible strain in the laminate thickness di-
rection. In addition, each lamina is considered perfectly bonded by an
infinitesimally thin layer with no slippage between laminae. The lam-
inate essentially acts as a single layer of material. More details can be
found in literature (for example [23] and [24]).

2.1. Failure Theories

There are two broad classifications of failure theories:

Limit theories, such as the maximum stress and maximum strain
failure theories, which compare local stress/strain components with
their corresponding strengths, neglecting the interaction between com-
ponents.

Interaction theories, such as Tsai-Hill and Tsai-Wu, which consider
the interaction between stress components, typically by considering the
contribution of each component to the total strain energy within the
solid body.

2.1.1. Maximum stress failure criterion

The maximum stress failure theory is related to the maximum normal
stress theory by Rankine and the maximum shearing stress theory by
Tresca [24]. Global stresses are resolved to local stresses in each lamina
and failure is predicted if any of the following inequalities are violated:

_(GF)ult <o < (UlT)ult’ _(UZC)ult <0y < (Gg-)ult’
(

- le)ult <7 < (le)ult’ M

where 6, 65 and 7, are the local in-plane stress at any location on
a lamina, (¢7),, and (¢°),, are the ultimate stress in the i direction
(i =1, 2) in tension and compression, respectively, and (z1,); is the
ultimate shear strength.

2.1.2. Tsai-Hill failure criterion

The Tsai-Hill criterion is an interaction criterion based on the dis-
tortion energy yield criterion for isotropic materials as applied to
anisotropic materials and subsequently adapted to unidirectional lamina
[24]. Failure is said to occur if the following inequality is violated:
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2.1.3. Tsai-Wu criterion

The Tsai-Wu criterion is based on the total strain energy theory
of Beltrami and applied to lamina in plane stress [24]. Per the Mises-
Hencky criterion, failure is assumed to have occurred if the following
inequality is violated:
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The H;, component is the only component that cannot be determined
from the strength parameters of the unidirectional lamina and must be
found experimentally [24]. The Mises-Hencky criterion for H;, provided
in Eq. (5) is an empirical suggestion and is used in this research.

2.1.4. Strength ratios

The failure theories described in Sections 2.1.1-2.1.3 allow one to
detect failure as a Boolean (i.e., “true” or “false”) value, but they provide
very little information on how much the applied load can be increased if
the laminate is safe or decreased if the laminate fails [24]. The strength
ratio is a particularly useful concept as it is applicable to any failure
theory and is accordingly used to compare all failure theories considered
in this research. The strength ratio is a simple metric defined as

F
max R (6)
F, applied

SR =

where F,jicq is the applied load and Fp,,, is the maximum load which
can be applied before the selected failure criterion is violated.

In order to use the failure theories to calculate the strength ratios
and the first-ply failure loads, we assume that the forces and moment

X=[(E11 Epn Gy vy 60 1)

per unit length (N, Ny, Ny, M,, M, Myx) applied on the composite
plate are multiplied by the strength ratio (SR).

o * * * * -1
(-l Bl wls BB o
€® and xx are the midplane strains and curvatures, A, B and D
matrices are the laminate’s extensional, coupling and bending stiff-
ness matrices, respectively [24], N=[ N, N, N,, 17, and M =
[ M, M, M, "

The global strain at any height z in lamina k of the laminate can be
obtained from the midplane strains and curvatures as:

(eG)k =¢€°+ zk = (° + zKx)SR. )

The local stresses at any height z in lamina k can also be obtained
as:

(00), =S¢ (er), =S¢ [T¢ (e6),] = ;' T¢ ' (€° + zK)SR, ©)

where S, = Si(E;1, Eoy, Gia, v12) and Ty = Ty(6)) are the reduced com-
pliance matrix and transformation matrix of ply k, respectively [24], and
Eq1, Eoy, Gqg, V15 and 6, are ply k’s two Young’s moduli, shear modulus,
Poisson’s ratio and fiber-orientation angle, respectively. So the in-plane
components of the local strain tensor at any height z in lamina k can be
written as (61)x = MSR, (65) = mSR and (71,), = pxSR. Using these
expressions of local stresses, we can obtain the strength ratio that can be
multiplied by the applied loads to cause first-ply failure. For the maxi-
mum stress failure theory, three values of strength ratios, corresponding
to the three sub-criteria, can be obtained for each ply k. The failure load
for this ply would be the minimum of these three values, and is expressed

as follows:
(Gr/c>ult (UZT/C>ult (T12)ue

|m] In| Il Lk
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where the tensile and compressive ultimate strengths are selected ac-
cording to the local stress condition (i.e., (6;7),, is used if my is positive).
For Tsai-Hill and Tsai-Wu failure theories, respectively, the maximum
applied load in lamina k can be expressed as

2 2 2
_ m mn n p
SRk(TsaiHiu)—1/\J<X—l>k—<X—§>k+<7)k+(§)k7 1
—Bk+\/Bz+4Ak.

SRk(Tsai—Wu) = 24, >
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B, = Hym; + Hyn; + Hgpy, 12)

The strength ratio for the whole laminate is then defined as the min-
imum value of SR; among all plies.

SR = min (SR). 13)
3. Brief overview of technique and statistical metrics
3.1. Monte Carlo simulation

Monte Carlo simulation (MCS) is a common and simple computa-
tional approach to stochastic problems. It is particularly useful in phys-
ical problems with many degrees of freedom and as such is used to gen-
erate the data used in this research. MCS involves repeated sampling of
random variables to simulate an arbitrarily large number of experiments
and obtain numerical results. For each trial in this study the material
properties, material strengths ply orientations, and ply thickness form a
vector, X, of basic random variables given by

v 0 1), @D, GO, @D, G, o | 09

ult ult

All material properties and geometric parameters are allowed to vary
at the ply level, but for simplicity, ultimate ply strengths are assumed to
be equal for all plies in a given laminate. The vector of stochastic input
variables X in (14) highlights the increasing complexity and uncertainty
of the laminate strength ratio as a random variable. For the type of
problem considered in this study, a laminate of only two plies possesses
17 stochastic degrees of freedom. As the number of layers increases, the
number of random variables increases linearly as 6n. The total number
of random variables in a laminate of n plies made of the same material
is 6n+5.

3.2. Probability of failure and correction factor

The probability of failure is defined in this study as the proportion
of laminates in a simulation of N trials whose resulting strength ratio is
less than the predicted deterministic value, SR, and can be calculated
as

M=

P = % I(SR, <SRp). (15)
i=1

where I(SR; < SR)p) is the indicator function of laminate failure, defined
as

1 ifSR; <SR,

I(SR, <SRp) = {0 on = o (16)
1

and the strength ratio, SR;, is a realization of the random variable, SR,
defined as a function of the random variable X in trial i, i.e. SR; = SR(X).

Defining failure probability in this way results in an issue similar
to the Boolean failure criteria in Section 2, namely that there is little
information provided on the degree of the laminate failure. To address
this, the correction factor (CF) is defined as

SR
CF= —2_|
SRFailed

an



J.R. Martinez and P.L. Bishay

where SRpgi.q is the strength ratio of the failed laminate (i.e. SRpgjeq
= SR; when SR; > SRp). Hence, CF is defined only when the laminate
fails. CF can be interpreted as the factor by which the strength ratio of
a laminate must be multiplied by to reach the predicted deterministic
value. It also provides a means to compare the relative magnitudes of
failure between simulation trials.

3.3. The empirical distribution function and sample quantiles

The cumulative distribution function (CDF) of a random variable, Y,
is used to describe the distribution of that random variable. It is defined
as

Fy(»)=P¥ <y), yeR 13)

The CDF is a useful way to visualize the distribution of a random
variable, Y, as it can be interpreted as the probability of observing a
value less than or equal to some realization of the random variable (y).
More importantly, the CDF effectively contains all information about the
random variable and completely determines the shape of its distribution.
The CDF can be approximated by

N
B =~ 211 <), (19)
i=1

which is also known as the empirical distribution function (EDF) [25].
The EDF of the strength ratio can therefore be defined as

N
Fp(x) = % Z I(SR; < x),
i=1
min {SR} < x < max {SR}, (20)

where min{SR} and max{SR} are the lowest and highest realizations of
the strength ratio of all trials in a given simulation. From Eq. (20), the
definition of the g sample quantile follows as

Fl(g)=inf{x : Fpr(x)> g}, 1)
which represents the value of the strength ratio or correction factor be-
neath which a proportion g of laminates falls below. For instance, if
g = 0.5 (50%), Eq. (21) would return the sample median strength ratio
or correction factor. inf{ } is the infimum function.

4. Simulation set-up and code validation
4.1. Procedure

A MATLAB code was written to compute the strength ratios of var-
ious laminates using CLT and each of the failure theories described in
Sections 2.1.1-2.1.3. Strength ratio data were generated using MCS for
five different simulations which consider various combinations of ma-
terial and laminate parameters to explore the interaction effects of ran-
domness in each parameter. Coefficients of variation were held constant
for each simulation with values in the interval [0.01, 0.20] and incre-
ments of 0.01. Each simulation was repeated for 5,000 trials, resulting
in a total of 100,000 trials for each combination of laminate and ma-
terial. The random seed was reset in between simulations to isolate the
interaction effects. The MATLAB code schematic is shown in Fig. 1. A
summary of simulations performed is provided in Table 1.

Materials examined and their corresponding mean values are sum-
marized in Table 2. These materials were used in [24] as well. Elastic
and shear moduli are given in units of GPa and strengths are given in
MPa. Ply thickness is given in meters. The standard deviations of all ma-
terial properties are defined in the MATLAB code as functions of their
mean values and CV. An exception is made for the ply orientation, whose
standard deviation is assumed to have a maximum of 1.8° at the upper
bound of simulated CV values and varies linearly with CV (e.g., the de-
viation is 0.9° for CV=0.10) as in [22].
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Experimental data from Maekawa [7] regarding material properties
of unidirectional carbon fiber-reinforced laminates shows that the dis-
tribution of basic material parameters can be closely approximated by
a Gaussian or normal distribution. Using the Kolmogorov-Smirnov test,
Lekou and Philippidis [6] showed that the assumption of normally dis-
tributed mechanical properties for unidirectional glass/polyester cannot
be rejected at the 5% significance level. Thus, the assumption of nor-
mally distributed material properties, strengths, ply thicknesses, and ply
orientations for the present analysis is valid.

4.2. Code validation

The CLT analysis coded in MATLAB considers a square plate of unit
length subjected to a pure tensile load of in the global x-direction (i.e.,
N,=1N/m, N, = Ny=M,=M,=M,, = 0). Given this loading con-
dition, the strength ratios reported in this research are equivalent to the
first-ply failure loads. Table 3 lists the various laminates considered in
this research.

First-ply failure load results were validated against literature [24] for
a [0 90 0] graphite/epoxy laminate subjected to a unidirectional tensile
load in the x-direction with ply thicknesses of 5 mm. Tsai-Wu strength
ratios for each ply at various elevations of the ply are shown in Table 4,
which demonstrates complete agreement with the developed MATLAB
code. Results for other failure theories show similar agreement and are
not shown.

First-ply failure load results were also validated against a converged
finite element model created on a commercial finite element analysis
software (SolidWorks Simulation 2019 Package). Laminates are mod-
eled as square planes with unit area and the bottom left corner is fixed
at the origin of the global coordinate system as shown in orange in Fig. 2.
Translation at the left and bottom edges is restricted in the perpendicu-
lar direction and rotation is restricted about the z-axis and in the edge
direction. The top and right edges are free and the default mesh size is
used.

Results of the finite element analysis are summarized in Table 5,
which shows a good agreement between the results of the MATLAB code
and the commercial software both in terms of the calculated first-ply
failure load and the predicted failure ply. In particular, the results of
the cross-ply laminate are identical. Deviation occurs with non-cross-
ply laminates due to the difference in analysis technique, namely the
propagation of element-wise coupling effects in using the finite element
method. Values for these laminates reported in Table 5 are median val-
ues on the midplane and were manually retrieved from the raw Solid-
Works simulation data. It is also noted that for laminates 2 and 5, the
limit and interaction failure theories result in different predicted failure
ply which are all correctly determined by the MATLAB code.

5. Results and discussion
5.1. Strength ratio coefficient of variation

Figs. 3-7 show an increasing strength ratio coefficient of variation
(CV(SR)) with input coefficient of variation (CV(X)) for all laminates
considered in this study. The figures again demonstrate the validity of
the MATLAB code as similar conclusions were drawn for both cross-
ply and non-cross-ply laminates in [14] and [22]. It is apparent that
the linear increase in natural frequency and displacement coefficients
of variation found in [14] and [22] is also mirrored for the strength
ratio.

Table 6 provides a summary of linear fit slopes for all combinations
of stacking sequence, material, and simulation. Across all laminates and
materials, the average slope is 1.2402 when considering all material
properties and parameters as random. This indicates that across all sim-
ulations, each unit change in CV(X) results in a 24% greater response in
the CV(SR) which is significantly disproportionate. All linear fits are cor-
related with an average minimum correlation coefficient of 0.997 across
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Fig. 1. MATLAB code flow chart.
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Laminate Seed "] Simulation (5000 Trials)
A
Table 1
List of simulations performed.
Simulation =~ Random parameters
1 Material properties only
2 Material properties and ply orientation
3 Material properties and ply thickness
4 Material properties, ply orientation, and ply thickness
5 Material properties, ply orientation, ply thickness and material strengths
Table 2
Mean material properties and parameters.
Material Eq; Ej Giz LT (CrD P G0 VAR €20 WA (- WA 79 WA ] t
Graphite/epoxy 181 10.30 717 0.28 1500 1500 40 246 68 0.0° 0.005
Glass/epoxy 386 827 414 026 1062 610 31 118 72 0.0°  0.005
Boron/epoxy 204 18.50 5.59 0.23 1260 2500 61 202 67 0.0° 0.005

Fig. 2. Solidworks model with boundary con-
ditions, load, and mesh.
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0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

Coefficient of Variation (X)

Fig. 3. Coefficients of variation: Input variables vs. Tsai-Wu strength ratios, Laminate 1 (M.P. means Material Properties).
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Table 3
List of studied laminates.

Laminate  Type of laminate Stacking Sequence

1 Cross-ply, unsymmetric [0 90 90 0 90 90 0 O]
2 Balanced [30 40 -30 30 -30 -40];
3 Angle-ply, balanced [-40 40 -40 40];

4 Angle-ply, symmetric [-40 40 -40 40 -40];

5 Antisymmetric, balanced  [45 60 -60 -45];

Table 4

Comparison of Tsai-Wu strength ratios for [0 90 0]
graphite/epoxy laminate.

Ply Number Position Kaw [24] MATLAB A%
1 Top 1.339E+07 1.339E+07  0.00
Middle 1.339E+07 1.339E+07  0.00
Bottom 1.339E+07 1.339E+07  0.00
2 Top 7.277E+06  7.277E+06  0.00
Middle 7.277E+06  7.277E+06  0.00
Bottom 7.277E+06  7.277E+06  0.00
3 Top 1.339E+07 1.339E+07  0.00
Middle 1.339E+07 1.339E+07  0.00
Bottom 1.339E+07 1.339E+07  0.00

all laminates and simulations. Only values for Tsai-Wu failure theory are
shown as other failure theories generate nearly identical results.

Table 6 also indicates that the slope magnitudes are heavily depen-
dent on stacking sequence. For simulation 5, the CV(SR) of laminate 5
exhibits an average slope of 1.0958 across all materials while the aver-
age for laminate 1 is 1.3725. In other words, the response of CV(SR) is
only 9.58% higher for each unit change of CV(X) for laminate 5 com-
pared 37.25% for laminate 1 — nearly four times greater an effect. This
difference in behavior between laminates 1 and 5 is explored in more
depth in Section 5.5, where it is shown that increasing CV(X) results
in different first-ply failures. For laminate 1, this behavioral change po-
tentially result in higher strength ratios, which is not typically true for
laminate 5. Because CV(SR) describes the dispersion of strength ratios
relative to the mean value, CV(SR) is greater for laminate 1.

In their paper, Tawfik et al. [22] found that ply angle randomness
was negligible for a [0 90] cross-ply laminate but significant for a [0 45 -
45 90] laminate, which shows a dependence on stacking sequence when
considering ply angle individually as a random variable. Figs. 4-6 con-
firm this for non-cross-ply laminates. Laminate 5 (Fig. 7) does not show
this significance, suggesting that, similar to cross-ply laminates, the ef-
fect of randomness in the ply angle is not significant for anti-symmetric
laminates.

Composites Part C: Open Access 4 (2021) 100102

Table 6
Trendline slopes: CV(SRg.wy) VS- CV(X).
Graphite/epoxy
Laminate Sim 1 Sim 2 Sim 3 Sim 4 Sim 5
1 0.8704 0.8619 1.0405 1.0304 1.4125
2 0.6588 0.7074 0.8715 0.9079 1.3037
3 0.387 0.5008 0.6468 0.7244 1.2326
4 0.3977 0.4855 0.6005 0.6627 1.2148
5 0.3053 0.3399 0.6021 0.6216 1.0536
Glass/epoxy
Laminate Sim 1 Sim 2 Sim 3 Sim 4 Sim 5
1 0.74146 0.73981 0.87852 0.87668 1.333
2 0.7926 0.8132 0.9703 0.9847 1.2812
3 0.6386 0.711 0.888 0.9382 1.2718
4 0.4936 0.5819 0.6986 0.7596 1.1748
5 0.4297 0.436 0.6663 0.6707 1.1551
Boron/epoxy
Laminate Sim 1 Sim 2 Sim 3 Sim 4 Sim 5
1 0.84001 0.83257 1.0019 0.99231 1.3718
2 0.612 0.6914 0.8389 0.8944 1.244
3 0.4023 0.5396 0.6517 0.7486 1.2507
4 0.3991 0.5118 0.603 0.6837 1.2252
5 0.3573 0.3567 0.6195 0.6203 1.0786

Independent of stacking sequence, material, and failure theory, the
greatest effect on CV(SR) is due to thickness as found in [15] and
[22], and material strength, whose importance was highlighted but not
tested in [15]. The importance of thickness was also reported by Go-
hari et al. [26], who found that slight changes in shell lay-up thickness
caused considerable fluctuations in failure strength. Subsequent studies
in Sections 5.2 through 5.5 are performed for simulation 5 (all parame-
ters random) unless otherwise noted.

5.2. Probability of failure

Fig. 8 shows the convergence of the Monte Carlo simulation results
for laminate 3, which converges to less than 1% relative error for all nine
combinations of material and failure theory, averaged over all values of
CV. As convergence studies for all other laminates return similar results,
the figure shown is specifically for laminate 3 since glass/epoxy under
the Maximum Stress criterion demonstrated the most distinct behavior
relative to any other laminate. Regardless, mean error for all laminates
converges to below 1.5% for 5000 trials, demonstrating that 5000-trials
is a suitable stopping point.

Figs. 9-13 show the probability of failure for the five considered
laminates in three materials using all considered failure theories. It can

Table 5
Comparison of SolidWorks model and MATLAB code solutions.
First-ply failure load (N/m) Failed Ply
Laminate  Theory SolidWorks MATLAB A% SolidWorks ~ MATLAB
1 Max. Stress 1.236E+07  1.236E+07  0.00 2 2
Tsai-Hill 1.236E+07 1.236E+07 0.00 2 2
Tsai-Wu 1.235E+07 1.235E+07 0.00 2 2
2 Max. Stress 6.987E+06 7.140E+06  -2.19 1 1
Tsai-Hill 6.688E+06 6.746E+06 -0.87 6 6
Tsai-Wu 6.217E+06 6.075E+06 2.28 6 6
3 Max. Stress 3.149E+06 3.192E+06 -1.37 4 4
Tsai-Hill 3.140E+06 3.184E+06 -1.39 4 4
Tsai-Wu 3.096E+06 3.113E+06 -0.54 4 4
4 Max. Stress 4.071E+06 4.076E+06 -0.13 3 3
Tsai-Hill 4.051E+06 4.057E+06 -0.15 3 3
Tsai-Wu 4.190E+06 4.187E+06 0.07 3 3
5 Max. Stress 1.427E+06 1.368E+06 4.17 2 2
Tsai-Hill 1.263E+06 1.220E+06 3.40 1 1
Tsai-Wu 1.184E+06 1.133E+06 4.28 1 1
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be concluded that failure probability is generally non-linear and highly
dependent on the combination of stacking sequence, failure theory, and
material. Failure is much less predictable for non-cross-ply laminates,
likely because there is a greater influence of randomness when there
are additional coupling effects due to the different stacking sequences.

The dependence of failure probability on the particular combination
of design factors is highlighted in Figs. 10-13, which indicate significant
interaction between failure theory, material, and stacking sequence. In
particular, Fig. 11 shows considerably different behavior for glass/epoxy

Coefficient of Variation (X)

Fig. 6. Coefficients of variation: Input variables vs. Tsai-Wu strength ratios, Laminate 4.

lecting a failure criterion.

under the maximum stress failure criterion. This is a contrary to the de-
terministic cases studied by Rattanawangcharoen [2] and Reddy and
Pandey [27], who concluded that all failure criteria are equivalent in
predicting failure of laminates subjected to in-plane loads. While there
are several scenarios in which failure theories are in close agreement,
there are more cases where they exhibit very different behavior; as re-
ported by Lopez et al. [28], no criterion is always the most or least
conservative, which highlights the caution that must be exercised in se-
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Laminate 3.

5.3. Correction factor

Fig. 14 shows a strong, positive correlation between the mean cor-
rection factor and CV(X). The mean is chosen because it is less robust to

outliers than the median and is therefore a more conservative measure.
The correction factor is generally less dependent on the combination of
stacking sequence, failure theory, and material than the probability of
failure.

Table 7 provides a comprehensive summary of the linear fit slopes
for all laminate, material, and failure theory combinations, which are
all correlated with an average minimum correlation factor of 0.993.

For almost any laminate and material combination there is a gen-
eral agreement in the mean correction factor between all failure theo-
ries, which is why most figures are omitted. Laminate 3 is an exception,
however, showing a relatively more extreme response of the mean CF
for glass/epoxy under the maximum stress failure theory. This is un-
doubtedly connected to the distinct failure probability shown in Fig. 11
(middle), but also indicates that, for this combination of failure theory,
material, and stacking sequence, laminates which do not meet the de-
terministic value simultaneously miss it by relatively larger margins.

From Table 7, the slope for Laminate 3 in this case is seen to be
2.7079, which means that for every 1% increase in CV(X) there is a
corresponding additive increase of 2.7% to the mean correction factor.
As with the strength ratio, CV(X) for laminate 5 seems to exhibit a lesser
magnitude of effect on the mean correction factor. Laminate 1 shows an
average slope of 2.0125 across all failure theories for graphite/epoxy,
while laminate 5 is only 1.6302.

Fig. 15 shows the EDF of the Tsai-Wu and maximum stress factors
of safety for laminates 1 and 3, respectively. The EDFs for other lam-
inate/theory combinations are nearly identical and are thus omitted.
Table 8 summarizes sample quantiles for mean correction factor for
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Table 7
Mean CFrg,; w, vs. CV(X): Trendline slopes.
Graphite/epoxy Glass/epoxy Boron/epoxy
Laminate Max. Stress  Tsai-Hill Tsai-Wu Max. Stress Tsai-Hill Tsai-Wu Max. Stress Tsai-Hill Tsai-Wu
1 2.0088 2.0141 2.0147 1.8566 1.8569 1.8495 1.9713 1.9753 1.9783
2 1.8556 1.8423 1.6893 1.8058 1.5102 1.4700 1.9619 1.9229 1.8418
3 1.8308 1.8572 1.8257 2.7079 1.8100 1.7637 1.8622 1.8803 1.9698
4 1.8979 1.8925 2.0056 2.0994 1.9897 1.9816 1.9128 1.8893 2.0468
5 1.8439 1.5823 1.4643 1.6817 1.6251 1.5946 1.6358 1.5372 1.5451
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only one combination of material and failure theory. These EDFs clearly
demonstrate that the sample quantiles of the factors of safety increase
significantly with CV(X). For laminate 1 of graphite/epoxy, 90% of sim-
ulated laminates have a correction factor less than or equal to 1.1269
when CV(X) is 0.05, but 1.7474 when CV(X) is 0.20. In other words,
with CV=0.05, 90% of laminates must be designed up to 13% stronger

10

to ensure the expected deterministic strength ratio is attained, compared
to 75% when considering CV=0.20 - a difference nearly 6 times greater.
For glass/epoxy laminate 3, the disparity is even more pronounced as
shown in Fig. 15 (right). These results agree with the findings of Khasaba
et al. [29], who concluded that there is a large penalty paid to gain high
reliability.
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Table 8
CFrgiwyu: Sample quantiles (graphite/epoxy).
90th 95th 99th
Laminate CV =0.05 CV =0.10 CV =0.20 CV =0.05 CV =0.10 CV =0.20 CV =0.05 CV =0.10 CV =0.20
1 1.1269 1.2829 1.7474 1.1622 1.3573 1.9955 1.2282 1.5124 2.7212
2 1.0976 1.231 1.6358 1.13 1.2983 1.8319 1.1923 14211 2.2885
3 1.1139 1.2592 1.6679 1.1408 1.3219 1.8589 1.1915 1.4497 2.3959
4 1.1399 1.316 1.7773 1.169 1.3901 1.9983 1.2224 1.5437 2.4876
5 1.0912 1.2098 1.5283 1.1148 1.2596 1.6818 1.1586 1.3734 2.0943
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5.4. Strength ratio empirical distribution functions

Fig. 16 shows the EDFs of the Tsai-Wu strength ratios for laminate
1 with varying degrees of CV(X). In all cases, there is an increasing
variation in the strength ratio as CV(X) increases, as indicated by the
widening shapes of the EDFs, similar to the mean factors of safety. The
EDFs of other simulations are nearly identical and are thus omitted.

5.5. Failure Ply

Figs. 17-20 show the distribution of failure plies for various magni-
tudes of CV(X). The distributions for most combinations of material and
failure theories are nearly identical and are thus omitted. Independent
of the combination of stacking sequence, material, and failure theory,
the variation in the failure ply increases with CV(X).

11

1 2 3 4 3 6 9/ 8 1 2 3 4 5

Tsai-Wu Failure Ply (Deterministic Ply = 2)

6 7 8

Graphite/epoxy, Laminate 1.

Interaction theories appear to be particularly sensitive to the increas-
ing variation since they consider all components of stress. Laminates 4
and 5 which are symmetric and anti-symmetric laminates, respectively,
also appear to have symmetric failure ply distributions. In addition, the
deterministic plies predicted by CLT fail with the highest empirical prob-
ability, but that probability is not as pronounced as for laminate 1. For
instance, in the case of laminate 5, the ply opposite to the deterministic
failed ply about the midplane fails with essentially equal probability,
even for the smallest displayed value of CV. This is true for both maxi-
mum stress and Tsai-Wu failure theories.

Although graphite/epoxy and boron/epoxy exhibit similar failure
ply distributions in almost all scenarios, glass/epoxy tends to have more
distinct behavior as demonstrated by comparing Figs. 19 and 20. For ex-
ample, for graphite/epoxy at CV=0.05, the failure ply distribution for
Tsai-Wu predicts most failures to happen in plies 1 and 4, with fewer



J.R. Martinez and P.L. Bishay

Count

Count

Count

5000

4000

3000

2000

1000

5000

4000

3000

2000

1000

5000

4000

3000

2000

1000

5000

4000

3000

2000

1000

5000

4000

3000

2000

1000

5000

4000

3000

2000

1000

CV=10.05

Composites Part C: Open Access 4 (2021) 100102

CV=0.10 CV=0.05

CV=0.10

[N}
w
IS
w
[N}
w
IS
w

Count

CV=0.15

5000

4000

3000

2000

1000

(S}
[
IS
w
[S)
[
IS
w

CV=0.20 CV=0.15

CV=0.20

IS}
w
IS
w
[S)
w
IS
w

Max. Stress Failure Ply (Deterministic Ply = 3)

CV=0.05

5000

4000

3000

2000

1000

I
|

1 2 3 4 5

Fig. 18. Failure ply distributions, Graphite/epoxy, Laminate 4.

CV=0.10 CV =10.05

1 2 3 4

Tsai-Wu Failure Ply (Deterministic Ply = 3)

CV=0.10

~
w
IS
~
w
IS

Count

CV=0.15

5000

4000

3000

2000

1000

S}
w
IS
S}
w
IS

CV=0.20 CV=0.15

CV=020

[N}
w
IS
8]
w
IS
)
w
ES
[N}
w
IS

Max. Stress Failure Ply (Deterministic Ply = 2)

CV=0.05

5000

4000

3000

2000

1000

Fig. 19. Failure ply distributions, Graphite/epoxy, Laminate 5.

CvV=0.10 CV=10.05

Tsai-Wu Failure Ply (Deterministic Ply = 1)

CV=0.10

~
w
IS
~
w
IS

Count

CV=0.15

5000

4000

3000

2000

1000

~
w
IS
~
w
~

CV=0.20 CV=0.15

CV=0.20

[N}
w
IS
8]
w
IS
[N}
w

ES

[N}
w
IS

Max. Stress Failure Ply (Deterministic Ply = 2)

5000

4000

3000

2000

1000

Fig. 20. Failure ply distributions, Glass/epoxy, Laminate 5.

—_

2

Tsai-Wu Failure Ply (Deterministic Ply = 2)



J.R. Martinez and P.L. Bishay

Composites Part C: Open Access 4 (2021) 100102

Table 9
Median stiffness ratios (Max. Stress Failure Ply), Laminate 1.
Material Failure Ply ¢ (E1/Ep)pyy 2 (E1/E)pyy 3 (E1/Exdpiy s (E1/Exdpiy 6
Graphite/epoxy 2 63.3%  17.236 17.797 17.612 17.605
3 26.0% 18.774 16.19 17.767 17.647
5 6.75% 19.332 18.968 14.864 17.954
6 3.72% 19.568 18.989 18.459 14.68
Glass/epoxy 2 59.0%  4.5685 47299 46851 46759
3 27.7% 49511 4.3143 4.7266 4.6993
5 8.33% 5.0688 4.9749 4.0014 4.7951
6 5.00% 5.0655 5.0122 49115 3.9261
Boron/epoxy 2 62.1% 10.811 11.173 11.051 11.047
3 26.5% 11.773 10.182 11.155 11.104
5 6.91% 12.125 11.885 9.4052 11.297
6 3.81%  12.134 11.898 11.568 9.1847
* deterministic failure ply
Table 10
Median stiffness ratios (Max. Stress Failure Ply), Laminate 5.
Material FailurePly g (E1/E2)piy 1 (E1/Epy2  (E1/Exdpys  (E1/Epdpiyy
Graphite/epoxy 1 17.8% 16.407 18.621 17.966 17.539
2 31.8% 17.904 16.786 17.828 17.603
3 32.2% 17.611 17.815 16.784 17911
4 18.2% 17.609 17.959 18.655 16.419
Glass/epoxy 1 5.38% 4.1323 5.4336 5.0449 4.5788
2 44.6% 4.7356 4.497 47798 4.6338
3 44.6% 4.6311 4.7746 4.4977 4.7353
4 5.36% 4.5964 5.0377 5.4632 4.1707
Boron/epoxy 1 4.54%  9.6411 12.746 12.287 10.931
2 45.4% 11.155 10.596 11.347 10.972
3 45.5% 10.969 11.332 10.59 11.151
4 4.60%  10.963 12.29 12.722 9.6632

* deterministic failure ply

observations in plies 2 and 3. The same plot for glass/epoxy is almost in-
verted, with nearly all failures occurring in plies 2 and 3. This difference
in behavior is likely related to the differences in the stiffness ratios for
each material, whose deterministic values are 17.573, 4.667, and 11.027
for graphite/epoxy, glass/epoxy, and boron/epoxy, respectively.

The failure ply and median stiffness ratios (E;/E,) for laminates 1
and 5 can be found in Tables 9 and 10, which also provide the respec-
tive proportion of laminates through all 100,000 simulations in the third
column as g, expressed as a percentage (i.e. g=count/100,000 x 100).
These tables indicate that the median stiffness ratio is always lowest
for the corresponding failed ply. Additionally, the median stiffness ra-
tios for the cross-ply laminate (laminate 1) are higher in every instance
where the failed ply changes. For example, for graphite/epoxy, in sce-
narios where ply 3 fails instead of the deterministic ply 2, the median
stiffness ratio of ply 2 increased from 17.236 to 18.774, as shown in
Table 9. In the less-common event that ply 5 fails, the median stiffness
ratio of ply 2 increases further to 19.332. Moreover, the values of the
median stiffness ratio for each scenario decreases with the likelihood
of that particular ply failing (i.e., for graphite/epoxy failure plies 2, 3,
5, 6, whose empirical probabilities of failing are 0.63, 0.26, 0.068, and
0.037, the median stiffness ratios of the failure plies are 17.236, 16.190,
14.864, 14.680, respectively, as highlighted in bold in the table). A sim-
ilar pattern is seen for laminate 5, though the overall behavior differs as
shown in Fig. 20 and Table 10.

This suggests a sequential order to scenarios in which ply failures
differ from the deterministic prediction; in order for a different ply
to fail, not only must that ply have a lower stiffness ratio relative to
the deterministic value, but the deterministic ply must simultaneously
have a higher stiffness ratio. This also suggests that cross-ply lami-
nates with failure plies different from what deterministic analysis pre-
dicts should accordingly have higher first-ply failure loads. This can be
seen in Fig. 21, which shows a plot of laminate median SR,y siress fOT
graphite/epoxy and glass/epoxy, grouped by the failure ply — each of the
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4 lines in any plot represents an aggregate of the strength ratio for lam-
inates with the failed plies designated by the legend. For example, the
purple line in Fig. 21 shows, for any given CV(X), the median SR,y siress
for laminates whose first failed ply is ply 6.

The deterministic failure ply (ply 2) has the lowest median strength
ratio, followed by plies 3, 5, and 6. While laminates with failure plies
other than the deterministic prediction do, in fact, correspond to higher
strength ratios, it is worth reiterating that they are less likely to fail. This
is particularly true for lower values of CV(X), as there is not enough vari-
ation in the input variables for a surprising outcome. For example, for
laminate 1 of graphite/epoxy in Table 9, the deterministic ply fails in the
majority (63.3%) of the total number of trials. This is also demonstrated
in Fig. 21 for graphite/epoxy plies 5 and 6, for which no observations
are seen for CV(X) less than 0.04. This pattern of sequentially increas-
ing strength ratios is shown for both materials in Fig. 21, which is also
reflected by the failure ply distribution in Fig. 17 (left).

Laminate 5 exhibits similar behavior, as shown in Fig. 22, which
shows similar information as Fig. 21, but for Laminate 5. For
graphite/epoxy, median strength ratios corresponding to the failure of
plies 1 and 4 are indeed higher than the deterministic ply, but the dif-
ference is much less pronounced than for laminate 1. For ply 3, which
is equally likely to fail as ply 2, there does not appear to be a significant
difference. By comparing the graphite/epoxy plot in Fig. 22 (left) to the
failure ply distributions in Fig. 19 (left) and empirical probabilities in
Table 10, it can be seen that the differences in occurrence are less ex-
treme than for laminate 1, which helps to explain why there is also a
lesser difference between the strength ratios of different failure plies.
Furthermore, unlike laminate 1, with which all materials had nearly
identical failure ply distributions, laminate 5 glass/epoxy exhibits much
different behavior between failure plies than graphite/epoxy. This be-
havior also mirrors the failure ply distributions shown in Fig. 20 —a more
pronounced difference in the empirical probability results in a more pro-
nounced increase in strength ratio. The different behavior in materials
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is likely due to the innate difference in stiffness ratios between graphite
and glass/epoxy as well as a difference in coupled behavior and stress
distribution due to stacking sequence. The behavior exhibited by lami-
nates 1 and 5 is not shared by laminates 2, 3, and 4, whose stiffness ratios
are accordingly not shown. In fact, there does not appear to be any pat-
tern in the stiffness ratios and the ply failures for these laminates, likely
due to the contrast of coupling effects of the different laminate stacking
sequences.

6. Conclusions

The stochastic effects on the response of composite laminated plates
under static unidirectional tensile loading were investigated in this work
by exploring the data generated via Monte Carlo simulation. The impor-
tance of considering randomness in the first-ply failure analysis of com-
posite laminates is highlighted by the disproportionate response of coef-
ficient of variation of strength ratio, CV(SR), to coefficient of variation of
all material and geometric parameters, CV(X), with an emphasis on ply
thickness and lamina strengths. Ply angle randomness is significant for
balanced and angle-ply laminates, but not cross-ply and anti-symmetric
laminates. A linear relationship between coefficient of variation of all
input variables and both the strength ratio coefficient of variation and
mean correction factor is demonstrated. The slope of the linear rela-
tionship is highly dependent on the combination of stacking sequence,
material, and failure theory. Probability of failure is generally nonlinear,
and no failure theory was found to always return the most or least con-
servative value. In general, there is an increasingly large penalty paid to
ensure that a laminate meets the expected deterministic strength ratio,
and this penalty increases with CV(X).
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Failure plies predicted by deterministic analysis are often inaccu-
rate when considering randomness in material properties and laminate
parameters, though this accuracy is dependent on stacking sequence.
For symmetric and antis-symmetric laminates, failure ply distributions
reveal that the empirical probability of occurrence is virtually equiv-
alent for both the deterministic ply and the opposite ply about the
midplane of the laminate. In the case of cross-ply and anti-symmetric
laminates, the failed ply has the lowest stiffness ratio. For cross-ply
laminates in particular, there appears to be a sequential order to un-
expected ply failures, which ultimately correspond to a higher first-ply
failure load.

This paper demonstrated the nonlinearity of probability of failure of
composite laminates, and the dependence of failure ply on the random-
ness of the laminate’s material and geometric parameters. Divergence
from deterministic, or expected, failure ply may or may not necessarily
affect the strength ratio in a positive way. These findings underscore the
importance of considering randomness in every available factor of the
design of composite laminates: stacking sequence, material selection,
and failure theory selection, among others. A few natural extensions of
this research include, but are not limited to, the application of shear
deformation theory, the consideration of hygrothermal effects, out-of-
plane loading, and employing the full discount method to analyze be-
havior beyond first-ply failure. These extensions will be the subject of
subsequent research.
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