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The production methodology of alloyed quantum-dot (QD) structures introduced a new design
degree of freedom for QD arrays which is the grading of the material composition in the QD
growth direction. This enables QDs of same size to generate different colors when exposed to
blue light based on the grading of each QD. The grading of the material composition affects the
material properties as well as the lattice mismatch strain between the QDs and the host matrix.
Previous studies modeled graded QDs by just considering graded lattice mismatch strain while
the material properties were kept uniform. Because these previous studies were seeking analyt-
ical solutions, including a graded material property model would have complicated the solutions.
In this paper, a fully-coupled thermo-electro-mechanical finite element model of a cylindrical func-
tionally graded QD (FGQD) in a host piezoelectric matrix is developed with both graded material
properties and graded lattice mismatch strain. Different cases are considered corresponding to
separately increasing and decreasing the strength of the lattice mismatch strain and the material
properties in the QD thickness direction. The grading function is expressed using the power law
that enables fractional exponents. The results show the effect of grading on the electromechan-
ical quantities and demonstrate the flexibility that grading can add to the design of QD arrays.
This work contributes to the development of quantum dots with “grading-dependent color” rather
than the traditional “size-dependent color.” The model can be easily extended to other cases such
as different shapes of QDs, addition of wetting layer, and any applied thermo-electro-mechanical
loads.

Keywords: Low-Dimensional Semiconductors Nanostructures, Eigenstrain, Piezoelectricity,
Finite Element.

1. INTRODUCTION

As the world’s most efficient light emitting technology,

quantum-dots (QDs) represent a truly enabling nanotech-

nology and offer revolutionary advantages in their wide

range of applications such as solid state lighting, power

efficient LEDs for superior performance in displays and

photovoltaics, solar cells, quantum computing and medical

imaging.1 Quantum dots are tiny particles or nanocrystals

of a semiconducting material with diameters in the range

of 2–10 nanometers that display unique electronic prop-

erties, intermediate between those of bulk semiconductors

and discrete molecules that are partially the result of the

unusually high surface-to-volume ratios for these particles.

The most apparent result of this is fluorescence, wherein

∗Author to whom correspondence should be addressed.

the nanocrystals can produce distinctive colors determined

by the size of the particles. Due to their small size, the

electrons in QDs are confined in a small space (quantum

box), and when the radius of the semiconductor nano-

crystal is smaller than the exciton Bohr radius (the average

distance between the electron in the conduction band and

the hole it leaves behind in the valence band), there is

quantization of the energy levels. Generally, as the size

of the crystal decreases, the difference in energy between

the highest valence band and the lowest conduction band

increases. More energy is then needed to excite the dot,

and concurrently, more energy is released when the crys-

tal returns to its ground state, resulting in a color shift

from red to blue in the emitted light. As a result of this

phenomenon, QDs can be tuned during manufacturing to

emit any color of light from the same material simply by

changing the dot size.
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Low-dimensional semiconductor nanostructures

(LDSNs), like QDs, are normally embedded in a host

material with different material properties and lattice

parameters,2 hence they are strained structures. Strain

in both the QD and the host matrix relax elastically to

accommodate the lattice mismatch and thus admit a new

state of stress. Because of the spatially confined motion

of electrons in QDs, the electronic structure and the

consequent optoelectronic properties are functions of the

lattice-mismatch induced strain. Since most semiconductor

materials are piezoelectric in nature,1 strain and piezo-

electric effects are being used as tuning parameters for

the optical response of LDSNs in band gap engineering.

On the other hand, thermal effects coupled with electri-

cal and mechanical fields in LDSNs have also become

important, thus temperature became another tuning

parameter.

Several analytical and computational studies have ana-

lyzed the electromechanical fields in QD systems (See

Ref. [1] and the references therein). For example, Patil

and Melnik1 presented a finite element model to study the

coupled thermo-electro-mechanical effects in uniform QDs

under thermal loadings. Their studies assumed uniform

material properties and eigenstrain (or mismatch strain).

On the other hand, alloyed QDs (e.g., InxGa1−xAs and

CdTexSe1−x� have attracted much interest recently because

the behavior of any electronic device made of these alloyed

QDs is strongly affected by their enriched but non-uniform

composition.3–7 The production methodology adopted for

manufacturing alloyed QDs enables the composition of the

QD to be graded, hence affecting the material properties as

well as the induced mismatch strain between the QD and

the carrier matrix.8�9 The possibility of tuning a particular

composition profile via alloying represents another degree

of freedom in the design of self-assembled heteroepitaxial

structures.10

Exact closed-form solutions were developed for QDs of

different shapes (spherical, cylindrical, ellipsoidal, pyrami-

dal, and arbitrarily shaped polygonal) with graded eigen-

strain in piezoelectric matrix (See Refs. [11–13] and the

references therein). For example, exact closed-form solu-

tions were derived for an arbitrarily shaped polygonal

inclusion with any order of polynomial eigenstrains in an

anisotropic magneto-electro-elastic full plane.11 Solutions

of linearly12 and quadratically13 graded eigenstrain in an

anisotropic piezoelectric half plane were also developed.

All the developed analytical models relied on two main

assumptions:

(1) The grading function of the eigenstrains is polynomial.

This is based on the fact proved by Eshelby that if the

eigenstrain inside an ellipsoidal inclusion is in the form of

a polynomial in Cartesian coordinates, the induced strain

field in the inclusion is also characterized by a polynomial

of the same order.14 This assumption facilitates obtaining

closed-form solutions. However, it should be noted that the

eigenstrains may not be explicitly given in a polynomial

form.15

(2) The graded composition of the QD material affects

only the eigenstrains, while the material properties

can be assumed constant. Grading the material proper-

ties would complicate the analytical models and ren-

der finding a closed-form solution very difficult if not

impossible.

This paper presents a fully coupled finite element model

of a cylindrical functionally graded QD (FGQD) system

with functionally graded material properties and graded

lattice mismatch strain in a host piezoelectric matrix. The

variations of the material properties and lattice mismatch

strain are applied in the thickness direction and using the

power law (fractional exponents). The effects of the mate-

rial property ratio, mismatch strain ratio and the power

law index on the mechanical and electrical fields of the

functionally graded QD system are analyzed for four cases

considering the possibilities of increasing or decreasing the

intensity of the mismatch strain and the material properties

in the thickness direction. The rest of the paper is orga-

nized as follows: Section 2 presents the governing equa-

tions and boundary conditions, Section 3 introduces the

grading functions used to describe the effective material

properties and lattice mismatch strain. Section 4 describes

the FE model. Section 5 presents the results, and final con-

clusions are in Section 6.

2. GOVERNING EQUATIONS AND
BOUNDARY CONDITIONS

The linear governing equations of steady state thermo-

electro-elasticity for a structure occupying volume �, are

the balance of linear momentum, Gauss’s law for electro-

statics, and the stationary heat conduction equation:

�ij� j + fi = 0� Di� i+q = 0� hi�i−k= 0 (1)

where �ij , Di, hi are the components of the stress tensor,

electric displacement vector, and heat flux vector, and fi, q

and k are the mechanical body force vector, electric charge

and heat source in �, respectively.

Gradient equations in the mechanical, electrical and

thermal domains are expressed as:

�kl =
1

2
	uk� l +ul�k�� Ek =−
�k� Qk =−T�k (2)

where, �kl�Ek�Qk� uk�
 and T are the components of

the strain tensor, electric field vector, temperature gradient

vector, mechanical displacement vector, electric potential

and temperature change from the reference tempera-

ture T0, respectively. Assuming the problem domain is

under thermal equilibrium, temperature change becomes
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spatially independent and only the first two equations in

Eqs. (1) and (2) need to be solved.

The constitutive relations relating thermo-electro-

mechanical quantities are expressed as,

�ij = cijkl�kl+ eijkEk−�ijT �

Di = eikl�kl+ ∈ik Ek+piT +P
sp
i � (3)

S = �ij�ij +piEi +�T T

where, cijkl, eijk and ∈ik are the elastic moduli, piezo-

electric coefficients, and dielectric constants, respectively,

while P
sp
i � pi and �ij are spontaneous polarization vec-

tor, thermoelectric and thermomechanical coupling con-

stants, respectively. In cylindrical coordinates, the strain

tensor components in Eq. (2) can be expressed, taking into

account the lattice mismatch, as:

�rr =
ur

r
−�∗a� �zz =

uz

z
−�∗c�

��� =
ur

r
−�∗a� �rz =

1

2

(
ur

z
+ uz

r

)
(4)

with �∗a = 	am−aQD�/aQD and �∗c = 	cm−cQD�/cQD inside

the QD. �∗a, �
∗
c are the local intrinsic strains (lattice mis-

match) along the a- and c-directions, respectively, while

am, cm and aQD, cQD are the lattice constants of the matrix

and the QD, respectively. The directions a and c corre-

spond to the shorter and longer dimensions of the unit cell

of the Wurtzite (WZ) crystal, respectively. As the substrate

is relatively large compared to the QD, we follow com-

mon practice to neglect lattice mismatch strain inside the

matrix.1�16–19

The material properties for WZ structures as well as

the geometry and boundary conditions in this study are

axisymmetric (no angular dependence), hence all electric

and mechanical fields are axisymmetric as well, and the

problem is reduced from 3D to 2D in the plane involving

the axis of cylindrical symmetry. The linearly independent

Fig. 1. (left) Geometry and coordinate system in (r , z) plane for cylindrical QD system (axisymmetric model), (right) COMSOL finite element mesh.

elastic constants and piezoelectric constants in a crystal

with WZ symmetry are then given as

c11 = c1111� c12 = c1122� c13 = c1133�
c33 = c3333� c44 = c2323�
c21 = c2121 = 	c11− c12�/2�

e31 = e311� e33 = e333� e15 = e113
�1 = �11� �3 = �33� ∈1=∈11� ∈3=∈33

(5)

Figure 1 (left) shows the geometric details of the cylin-

drical QD system considered in this study, where the QD

has a radius of b = 4 nm and a height of hQD = 4 nm,

while the height of the carrier matrix is L = 30 nm and

its diameter D= 2W = 120 nm. The geometry and dimen-

sions considered here are based on experimental results

(reported in Ref. [20]). In this study, we choose GaN/AlN

QD system, which can be analyzed as representative of

III–V group semiconductors. The material properties of

this QD system are given in Ref. [1]. The values of the

lattice mismatch strain for GaN/AlN QD system are: �∗a =−2�47% and �∗c =−4�07%.

Mechanical rollers and electric ground boundary condi-

tions are imposed along the top and bottom faces of the

system (see Fig. 1 (left)), the right face is traction free and

electrically isolated, while symmetry boundary conditions

(ur = 0, uz/r = 0, 
/r = 0� are applied along z-axis.
Temperature can range from 0 to 1000 K to cover most

thermoelectric applications of interest.

3. GRADING FUNCTION FOR MATERIAL
PROPERTIES AND LATTICE MISMATCH
INDUCED STRAIN IN FGQDs

A functionally graded material (FGM) is a continuous

medium defined by the variation in the volume fractions of

its constituents. The power-law function, exponential func-

tion, or sigmoid function have been used to describe the

volume fractions of an FGM. A power law type definition

for the volume fraction across the thickness direction (z)
can be given as:21

f 	z� =
(
0�5+ z

hQD

)n

where z ∈
[
−hQD

2
�
hQD

2

]
(6)
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Fig. 2. The effective material property Peff 	z� in the QD.

where hQD is the height of the QD and n is the power

law index. When n = 1, the variation in volume fraction

is linear in the thickness direction. If n is less than 1, the

nonlinear grading function goes quicker to the value at the

top of the QD, while if n is larger than 1, the grading

function goes slower to the value at the top of the QD as

we move vertically upwards. Based on the volume fraction

definition and law of mixtures, the effective properties of

an FGM in the thickness direction can be expressed as:

Peff	z�= P�1+�	2f 	z�−1���

� = Pu−Pl

Pu+Pl

� P = Pu+Pl

2
(7)

where Peff	z� is the effective material property of the

FGM; subscripts u and l denote, respectively, the upper

and lower surface property of the FGM solid. Pu =
Peff	hQD/2�= P	1+�� and Pl = Peff	−hQD/2�= P	1−��.
When n= 0, Peff = Pu = P	1+�� and when n=�, Peff =
Pl = P	1−�� inside the QD. Figure 2 shows Peff	z� for the

case of hQD = 4 nm, P = 1� � = 1/3 and different values

of n.
In this study, we assume that grading the material in

the thickness direction will affect all material properties in

Eq. (5) in the same fashion. Hence,

	cij �l

	cij �u
= 	eij �l

	eij �u
= 	∈i�l

	∈i�u
= 	�i�l

	�i�u

= 	pi�l
	pi�u

= 	P
sp
i �l

	P
sp
i �u

= 1−�

1+�
(8)

If � < 0, then the magnitude of the material properties

decreases in the thickness direction, while if � > 0, the

magnitude increases as the QD grows.

The effective mismatch strains of a FGQD can be

expressed similarly as:

�∗aeff 	z�= �∗a�1+�	2f 	z�−1���

�∗ceff 	z�= �∗c �1+�	2f 	z�−1���

�= �∗au −�∗al
�∗au +�∗al

= �∗cu −�∗cl
�∗cu +�∗cl

� (9)

�∗a =
�∗au +�∗al

2
� �∗c =

�∗cu +�∗cl
2

where �∗au = �∗aeff 	hQD/2� = �∗a	1 + ��, �∗al =
�∗aeff 	−hQD/2� = �∗a	1− �� and similarly for �∗cu and �∗cl .
It is important to note that � could be different from �.
This allows considering four possibilities for increasing or

decreasing mismatch strain with increasing or decreasing

magnitude of the material properties. The same power

law function f 	z� in Eq. (6) is used for the two consid-

ered types of grading. It should be emphasized that as

n increases, larger portion of the QD will have values

of material properties and mismatch strain closer to the

values at the bottom of the QD.

4. FINITE ELEMENT MODELING

Using the governing equations described in Section 2, an

FEM model was developed in COMSOL Multiphysics.22

The Piezoelectric Devices (pzd) user interface under the

Structural Mechanics branch in COMSOL, combining

Solid Mechanics and Electrostatics for modeling piezo-

electric devices, is used in these simulations. Initial stress

(�0�, initial strain (�0�, and remanent electric displace-

ment (Dr � can be defined in the stress-charge formulation

of the constitutive relation for piezoelectric materials:

� −�0 = cE	�−�0�− eTE� D−Dr = e	�−�0�+�SE
(10)

where � is the strain, � is the stress tensor written in

vector form, E is the electric field, and D is the electric

displacement field vectors. The material properties cE , e,
and �S correspond to the material stiffness tensor, piezo-

electric coupling tensor (written in matrix form), and the

electric permittivity matrix.

Two grading functions are defined in the FEM model,

f1	z� for material grading and f2	z� for eigenstrain

grading:

f1	z�= 1+�	2f 	z�−1�� f2	z�= 1+�	2f 	z�−1�
(11)

where f 	z�, � and � are defined in Eqs. (6), (7), and (9),

respectively.

The initial stress and strain tensors, written in matrix

form, in the FG GaN QD take the form:

� 0 =

⎛
⎜⎜⎝
−�1 0 0

0 −�1 0

0 0 −�3

⎞
⎟⎟⎠ f1	z��

�0 =

⎛
⎜⎜⎝
−�∗a 0 0

0 −�∗a 0

0 0 −�∗c

⎞
⎟⎟⎠ f2	z� (12)
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In the AlN carrier matrix, the initial strain is assumed

zero, while the initial stress takes the same form of � 0 in

Eq. (12) without f1	z�.
The remnant electric displacement field vector Dr

accounts for the pyroelectric effect and the spontaneous

polarization, and is defined as:

Dr =
⎛
⎝ 0

0

p3T +P sp

⎞
⎠ f1	z� (13)

where �1, �3, p3 and P sp in Eqs. (12) and (13) take the

values of the corresponding material in each domain. The

grading function f1	z� is also multiplied by the material

matrices in Eq. (10): cE ⇒ cEf1	z�, e ⇒ ef1	z�, �S ⇒
�Sf1	z� in the FGQD domain.

It was found that a convergent solution with smooth

distribution of electromechanical quantities at r = 0 can

be achieved with “Extra Fine” mesh in the matrix domain

(with maximum element size, m, of 1.2 nm) that is refined

as we approach the domain of the QD which has m =
0�1. The selected mesh which is composed of 9,365 higher

order triangular elements is shown in Figure 1 (right).

5. RESULTS

The developed FEM model was first validated for the case

of uniform material properties and eigenstrain by compar-

ison with the published results in Refs. [1, 17, and 23].

Excellent agreement was found in all cases. In this section,

(a) (b)

(c) (d)

Fig. 3. Effect of material property ratio � on the electromechanical quantities of cylindrical GaN/AlN FGQD system with �= 0�n= 1, and constant

temperature of 300 K: (a) electric potential 
, (b) electric field Ez, (c) strain �rr , and (d) strain �zz.

we present the effect of material and eigenstrain grading on

the electro-mechanical behavior of GaN QD in AlN matrix.

This system is selected because of the relatively prominent

piezoelectric nature of Wurtzite materials compared to the

Zincblende materials. Subsection 5.1 presents the effect of

the material property ratio (��, Subsection 5.2 presents the

effect of the mismatch strain ratio (��, Subsection 5.3 com-

bines both effects of � and �, and Subsection 5.4 shows

the effect of the grading function exponent (n) on the elec-

tromechanical quantities in the FGQD and the host matrix.

An important point to note is that for band-gap calcu-

lations, the mismatch strain is subtracted from the actual

compatible elastic strain. As a result, while in the solid

mechanics community, the compatible elastic strain is nor-

mally expressed and plotted, the QD research community

often illustrates the subtracted strain. This can potentially

cause confusion and care must be exercised in interpreting

results from the solid mechanics literature.1 In the strain

plots in this section we plot �rr and �zz as defined in Eq. (4).

5.1. Effect of Material Property Ratio �

In this study we demonstrate the effect of grading the

material properties of the QD in the thickness direction

using linear grading function (n = 1) and with uniform

eigenstrain in the QD (� = 0). The temperature is kept

constant at 300 K. Figure 3 shows the electromechani-

cal variables along the axis of symmetry (r = 0) of the

cylindrical QD for three cases of material property ratio

546 J. Comput. Theor. Nanosci. 15, 542–550, 2018
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�. � = 0 corresponds to no grading, while � = 1/3 corre-

sponds to increasing magnitude of all material properties

in the z-direction (or magnitude of all material properties

at the bottom of the QD is half that at the top of the QD),

and � =−1/3 corresponds to decreasing magnitude of all

material properties in the z-direction (or magnitude of all

material properties at the bottom of the QD is double that

at the top of the QD).

It can be seen that as � increases, the electric potential

difference across the thickness of the QD remains constant,

the magnitude of vertical electric field Ez at the bottom

of the QD increases while that at the top decreases. The

magnitude of the compressive �rr at the bottom of the QD

increases while that of the tensile �rr in the host matrix

below the QD decreases. Finally the magnitude of com-

pressive �zz at the bottom of the QD highly increases and

gets much larger than that at the top of the QD, while that

of the compressive �zz in the host matrix below the QD

decreases.

5.2. Effect of the Mismatch Strain Ratio �

Now we demonstrate the effect of grading the mismatch

strain (eigenstrain) on the electromechanical quantities

in the QD system considering linear grading function

(n= 1) while keeping uniform material properties in the

QD (� = 0). Again three cases are considered: �= 0 cor-

responds to uniform (ungraded) mismatch strain, while

�= 1/3 indicates that the magnitude of the mismatch

(a) (b)

(c) (d)

Fig. 4. Effect of initial lattice mismatch strain ratio � on the electromechanical quantities of cylindrical GaN/AlN FGQD system with � = 0�n = 1,

and constant temperature of 300 K: (a) electric potential 
, (b) electric field Ez, (c) strain �rr , and (d) strain �zz.

strain at the bottom of the QD is half that at the top, and

�=−1/3 indicates that the magnitude of mismatch strain

at the bottom of the QD is double that at the top. Figure 4

shows the electromechanical variables along the axis of

symmetry of a cylindrical QD for the three cases of lat-

tice mismatch strain ratio �. It can be observed that as �
increases, the electric potential difference along the QD

remains constant, the magnitudes of Ez and �rr decrease

at the base of the QD and in the host matrix below the

QD. However, the magnitude of the compressive �zz highly
increases at the base and decreases at the top of the QD.

As � decreases, the jump in �zz that happens through the

base of the QD is significantly reduced because of the

reduction of �zz in the host matrix and its increase in the

QD, while the jump at the top of the QD gets larger.

It is very interesting to note that the effect of � is qual-

itatively opposite to that of � on the z-component of elec-

tric displacement (Ez�, and the radial component of strain

(�rr� inside the QD, while both � and � have qualitatively

similar effects on the z-component of the strain (�zz� inside
the QD, and �rr in the host matrix. It is also interesting to

note that � has much stronger effect on �rr than �, while
both � and � have quantitatively similar effects on �zz.

5.3. Effect of Varying the Material Property Ratio
and the Mismatch Strain Ratio Simultaneously

After understanding the effects of varying � and � sepa-

rately on the QD system, we allow both � and � to vary

J. Comput. Theor. Nanosci. 15, 542–550, 2018 547
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(a)

(c) (d)

(b)

Fig. 5. Effect of varying the material property ratio � and the mismatch strain ratio � on the electromechanical quantities of cylindrical GaN/AlN

FGQD system with n= 1 and constant temperature of 300 K: (a) electric potential 
, (b) electric field Ez, (c) strain �rr , and (d) strain �zz.

(a)

(c) (d)

(b)

Fig. 6. Effect of varying the power law index on the electromechanical quantities of cylindrical GaN/AlN FGQD system at a constant temperature of

300 K, �= 1/3 and � = 1/3 (a) electric potential 
, (b) electric field Ez, (c) strain �rr , and (d) strain �zz.

548 J. Comput. Theor. Nanosci. 15, 542–550, 2018
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simultaneously in this study which provides more real-

istic cases because grading the composition of the QD

in the growth direction is expected to affect the material

properties as well as the induced lattice mismatch strain.

We consider four cases here corresponding to increasing

or decreasing the mismatch strain and the magnitude of

material properties in the thickness direction. Figure 5

shows these four cases in addition to the ungraded case

(� = �= 0) to facilitate the comparison. It can be seen

that although the distribution of 
 changes, the electric

potential difference across the height of the QD remains

constant. The case of (� = −1/3, � = 1/3) results in the

maximum magnitude of Ez and �rr at the base of the QD,

while the opposite case (� = 1/3� � = −1/3) results in

the maximum magnitude of Ez and �rr at the top sur-

face of the QD. This behavior is expected based on the

observations drawn in the previous two subsections. The

case of (� = 1/3� � = 1/3) results in the maximum mag-

nitude of �zz at the base of the QD, while the opposite

case (�=−1/3� �=−1/3) maximizes �zz at the top of the

QD. These results would provide important guidance to

device designers. For example if the design requirements

are to achieve maximum magnitude of Ez at the top sur-

face of the QD, the composition of the grown QD should

be designed such that the magnitude of the material prop-

erties decreases in the thickness direction while the lattice

mismatch strain increases.

5.4. Effect of the Power Law Index
Figure 6 shows the effect of the power law index (n) on
the electromechanical quantities of the FG GaN/AlN QD

system for the case of increasing the magnitudes of the

material properties and the mismatch strain (�= 1/3� � =
1/3) in the thickness direction at a constant temperature

of 300 K. Three cases are considered for n: 0.5, 1, 2. It

can be observed that as n increases, the electric potential

difference along the height of the QD increases, the mag-

nitude of Ez in the QD increases, the magnitudes of �rr
and �zz decrease in the host matrix around the QD, and

their curvatures inside the QD change. The electric poten-

tial difference across the height of the QD, that was shown

to be unaffected by variations in the grading ratios � and

�, is directly proportional to the power law index n.

6. SUMMARY AND CONCLUSIONS

In this study, a fully coupled thermo-electro-mechanical

finite-element model for functionally-graded quantum dot

in a piezoelectric matrix was developed. Grading of the

material properties as well as the lattice mismatch strain

were considered, and the effects of different cases of grad-

ing on the electromechanical quantities in the QD sys-

tem were studied. The power law was used to express the

nonlinear grading functions in the FGQD, and the effect

of the power law index was also presented.

It is the first time that grading in both material properties

and lattice mismatch strain is considered and accordingly

the results in this paper are believed to be more accu-

rate than the previous analytical models that used graded

mismatch strain with uniform material properties. This

work contributes to the development of quantum dots with

“grading-dependent color” rather than the traditional “size-

dependent color.” Grading is now a new tuning parameter

to be added to the other design variables of QD arrays

such as shape, size, mismatch strain, piezoelectric cou-

pling and temperature, giving the designers larger design

space for next-generation quantum dot structures and

devices.

The developed model can be extended to other cases

such as different shapes of QDs in 2D (dome, trun-

cated cone, etc.) or 3D (cube, polygon, etc.), addition of

wetting layer, and any applied thermo-electro-mechanical

loads.

Acknowledgment: The first author acknowledges the

support of California State University, Northridge.

The second and fourth authors gratefully acknowledge the

supports of the Slovak Science and Technology Assistance

Agency registered under number APVV-14-0216 and the

Slovak Grant Agency VEGA-2/0046/16.

References
1. S. Patil and R. V. N. Melnik, Nanotechnology 20, 12

(2009).
2. R. Maranganti and P. Sharma, Handbook of Theoretical and Com-

putational Nanotechnology, edited by M. Rieth and W. Schommers,

American Scientific Publisher, CA (2005), Vol. 1, pp. 1–44.
3. C. Lang, D. Nguyen-Manh, and D. J. H. Cockayne, J. Appl. Phys.

94, 7067 (2003).
4. C. Lang, D. J. H. Cockayne, and D. Nguyen-Manh, Phys. Rev. B

72, 155328 (2005).
5. H. L. Duan, B. L. Karihaloo, J. Wang, and X. Yi, Phys. Rev. B

74, 195328 (2006).
6. R. E. Bailey and S. M. Nie, Journal of American Chemical Society

125, 7100 (2003).
7. J. Tersoff, Phys. Rev. Lett. 81, 3183 (1998).
8. H. L. Duan, B. L. Karibaloo, J. Wang, and X. Yi, Nanotechnology

17, 3380 (2006).
9. G. H. Nie, L. Guo, C. K. Chan, and F. G. Shin, International Journal

of Solids and Structures 44, 3575 (2007).
10. A. Malachias, S. Kycia, G. Medeiros-Ribeiro, R. Magalhaes-

Paniago, T. I. Kamins, and R. S. Williams, Phys. Rev. Lett.
91, 176101 (2003).

11. Y. G. Lee, W. N. Zou, and E. Pan, Proceedings of the Royal Society
of London A 471, 20140827 (2015).

12. Q. D. Chen, K. Y. Xu, and E. Pan, International Journal of Solids
and Structures 51, 53 (2014).

13. Y. M. Yue, K. Y. Xu, Q. D. Chen, and E. Pan, Acta Mechanica
226, 2365 (2015).

14. J. D. Eshelby, Proceedings of the Royal Society of London A, Math-
ematical and Physical Sciences 241, 376 (1957).

15. P. Sharma and R. Sharma, Journal of Applied Mechanics 70, 418

(2003).
16. R. Maranganti and P. Sharma, J. Comput. Theor. Nanosci. 4, 715

(2003).

J. Comput. Theor. Nanosci. 15, 542–550, 2018 549



R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Analysis of Functionally Graded Quantum-Dot Systems with Graded Lattice Mismatch Strain Bishay et al.

17. B. Lassen, M. Willatzen, D. Barettin, R. V. N. Melnik, and L. C.

Voon, Journal of Physics: Conference Series 107, 10701 (2008).
18. A. D. Andreev and E. P. O’Reilly, Phys. Rev. B 62, 15851 (2000).
19. A. D. Andreev and E. P. O’Reilly, Physica E: Low-Dimensional

Systems and Nanostructures 10, 553 (2001).
20. M. Arley, J. L. Rouviere, F. Widmann, B. Daudin, G. Feuillet, and

H. Mariette, Appl. Phys. Lett. 74, 3287 (1999).
21. S. H. Chi and Y. L. Chung, International Journal of Solids and

Structures 43, 3657 (2006).

22. COMSOL is the developer of COMSOL Multiphysics software, an

interactive environment for modeling and simulating scientific and

engineering problems (Web link: www.comsol.com).

23. D. Barettin, B. Lassen, and M. Willatzen, Journal of Physics: Con-
ference Series 107, 012001 (2008).

24. A. D. Andreev and E. P. O’Reilly, Nanotechnology 11, 256

(2000).
25. S. Lee, O. L. Lazarenkova, P. Allmen, F. Oyafuso, and G. Klimeck,

Physical Review B 70, 125307 (2004).

Received: 31 August 2017. Accepted: 10 September 2017.

550 J. Comput. Theor. Nanosci. 15, 542–550, 2018


