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Abstract. A fully coupled thermo-electro-mechanical models of cylindrical and truncated conical 

GaN/AlN Functionally Graded Quantum Dot (FGQD) systems with and without WL are analyzed in 

this study to determine the effect of lattice mismatch strain grading on the electromechanical behavior 

of the FGQD system. This has a technological and fundamental importance because the production 

methodology adopted for manufacturing QDs enables the composition of the QD material to be 

graded in the growth direction, so the material properties as well as the induced mismatch strain 

between the QD and the carrier matrix are accordingly graded. The power law is used to describe the 

grading function. Based on the obtained results, grading of material properties and lattice mismatch 

strain have significant effect on the distribution of the electromechanical quantities inside the QD and 

can be used as another tuning parameter in the design of QD systems. 

Introduction 

Due to their current and potential applications in optoelectronics, biotechnology and other areas, 

spatially confined motions of electrons in low dimensional semiconductor nanostructures (LDSNs), 

like quantum dots (QDs), have drawn increasing attention of physics and engineering communities 

[1].  LDSNs are strained structures as they are normally embedded in a host material with different 

structural properties. Piezoelectric effects in LDSNs are also important because most of the 

semiconductor materials are piezoelectric in nature [1]. Strain, piezoelectric and thermal effects are 

being used as tuning parameters for the optical response of LDSNs in band gap engineering.  

In [2], [3], it was found that the production methodology adopted for manufacturing functionally 

graded QDs enables the composition of the QD material to be graded. This affects both the material 

properties as well as the initial strain induced in the QDs due to mismatch in lattice parameters of the 

QD and the carrier matrix. Patil and Melnik [1] presented a coupled model of thermo-electro- 

elasticity that was applied to the analysis of uniform QDs under different thermal loadings and their 

effects on the electromechanical properties and band structure of the QDs. Shodja and Rashidinejad 

[4] conducted a study on interacting functionally graded quantum wires (QWRs)/ QDs with arbitrary 

shapes and general anisotropy within a distinct piezoelectric matrix using an electromechanical 

equivalent inclusion method in Fourier space (FEMEIM). This study claimed the method to be able to 

readily treat cases where the QWRs/QDs are multiphase or functionally graded. However, it 

essentially focused on determination of two-dimensional electro-elastic fields of periodically as well 

as arbitrarily distributed interacting QWRs and QDs of arbitrary shapes within a piezoelectric matrix.  

In the analysis of Pearson and Faux [5], dots with graded composition exhibited smaller strains at 

the base because the mismatch strain is lower at the base for this case, compared to dots with uniform 

composition. Several works have resolved strain distribution in different shapes via numerical 

methods. For example, Shin et al. [6] used the finite element method and analyzed structures similar 
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to those in [5]. They reported the change in strain distribution with change in dot truncation as a 

function of stacking period.  

Closed-form solutions were recently developed for QDs with graded eigenstrain in piezoelectric 

matrix. For example, exact closed-form solutions for an arbitrarily shaped polygonal inclusion with 

linearly [7] and quadratically [8] graded eigenstrain in an anisotropic piezoelectric half plane were 

developed. These analytical solutions assumed uniform material properties to simplify the 

formulation. A finite element model of a FGQD with both graded material properties and eigenstrain 

described by the power law (fractional exponents) in a piezoelectric matrix has not been investigated 

yet. This paper presents a fully coupled model of FGQD with functionally graded material properties 

and lattice mismatch strain in a host piezoelectric material. The grading is only applied in the 

thickness direction. The effects of the material property ratio, mismatch strain ratio and the power law 

index of the grading function on the electromechanical variables in the QD system are analyzed. 

Governing Equations 

The linear governing equations of thermo-electro-elasticity for a structure occupying volume Ω, 

under steady state conditions are the balance of linear momentum, Gauss’s law for electrostatics, and 

the stationary heat conduction equation: 

 , , .0; 0; 0ij j i i i i if D q h k         (1) 

where ij , iD , ih  are the components of the stress tensor, electric displacement vector, and heat flux 

vector, and if , q  and k  are the mechanical body force vector, electric charge and heat source in  , 

respectively. Coupling of equations (1) is implemented through constitutive equations. 

 Gradient equations are defined as: 

  , , , ,

1
; ;

2
kl k l l k k k k ku u E Q         (2) 

where, kl , kE , kQ , ku ,   and  are the components of the strain tensor, electric field vector, 

temperature gradient vector, mechanical displacement vector, electric scalar potential and 

temperature change from the reference temperature 0T , respectively. 

The constitutive relations relating thermo-electro-mechanical quantities are expressed as 

 ; ;
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where, ijklc , ijke  and ik  are the elastic moduli, piezoelectric coefficients, and dielectric constants, 

respectively.
sp

iP is the spontaneous polarization, ip  and ij  are thermoelectric and 

thermomechanical coupling constants, respectively. S denotes entropy. To take into account the 

lattice mismatch, the strain tensor components in eq. (2) for cylindrical symmetry take the form: 
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
   inside the QD. Quantities ma , mc  and QDa , QDc  are the 

lattice constants of the matrix and the QD, respectively, while quantities, *
a , *

c  are the local intrinsic 

strains (lattice mismatch) along the a  and c directions, respectively. The directions a and 

c correspond to the shorter and longer dimensions of the unit cell of the Wurtzite (WZ) crystal, 

respectively. As the substrate is relatively large compared to the QD, we follow common practice to 

neglect lattice mismatch inside the matrix [1], [9]. Thermal equilibrium is assumed throughout the 

problem domain. Therefore, the temperature change becomes spatially independent, effectively 
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leading to the determination of the solution of the heat conduction equation in eq. (1). However, these 

equations are still coupled via the constitutive eqs. (3).  

The material properties for WZ structures as well as the geometry and boundary conditions in this 

study are axisymmetric (no angular dependence), hence all the thermal, electric and mechanical field 

solutions are axisymmetric as well. The original 3D problem can then be reduced in this case to a 

simpler 2D problem in the plane of the axis of cylindrical symmetry. The linearly independent elastic 

constants and piezoelectric constants in a crystal with WZ symmetry are given as 

 1111 11 1122 12 1133 13 3333 33 2323 44 2121 11 12

311 31 333 33 113 15 11 1 33 3 11 1 33 3

, , , , , ( ) / 2,

, , , , , ,
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  (5) 

Grading function for material properties and lattice mismatch strain in a FGQD.  

All material properties in the QD will be graded as follows 

  ( ) 1 2 ( ) 1 ; ; ( ) 0.5 | ,
2 2

n

QD QDl u
eff

l u QD

h hP P z
P z P f z f z z

P P h
 

   
                  

  (6) 

where ( )effP z  is the effective material property of the FGQD; subscripts u and l denote, respectively, 

the upper and lower surface property of the FGQD.  0effP P  for linear grading (n = 1). When 0n  , 

(1 )eff uP P P     and when n   , (1 )eff lP P P     inside the QD. 

Similarly, the effective mismatch strains of a functionally graded QD, in eq. (4), can be expressed as: 
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Fig. 1. (left) Geometry and co-ordinate system in (r, z) plane for a truncated conical QD with WL, (right) Finite element 

mesh of truncated conical QD without WL (axisymmetric model) 

 

It should be noted that as n increases, larger portion of the QD will have values of mismatch strain 

closer to the values of mismatch strain at the base of the QD. This means smaller mismatch strains at 

the upper portion of the QD. In this work, we consider cylindrical and truncated conical QD geometry 

with and without wetting later (WL). Fig. 1 (left) shows the geometric details of the model. We use 

the following dimensions: height of the carrier matrix is L = 30 nm and its diameter D = 2W = 120 nm, 

height of QD 
QDh  = 4 nm, upper and lower radii of the truncated conical QD b1 = 4 nm and b2 = 8 nm, 

and height of WL / 4WL QDh h  = 1 nm. Cylindrical QDs has constant radius b = 4 nm. The material 

properties of GaN/AlN QD system, which can be analyzed as a representative of III-V group 

semiconductors, are given in [10]. Based on the lattice constants, the values of lattice mismatch strain 

for GaN/AlN QD systems are:
* 2.47%a    and 

* 4.07%c   . The roller BCs for mechanical fields 

and Dirichlet condition for electric fields (electric ground) are imposed along the top and bottom faces 

of the system (see Fig. 1 (left)), the right face is traction free and electrically isolated, while symmetry 

boundary conditions are applied at the left face.  
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Finite Element model  

A Finite Element Model (FEM) was developed in COMSOL Multiphysics using the Piezoelectric 

Devices (pzd) user interface, where initial stress ( 0S ), initial strain ( 0ε ), and remanent electric 

displacement rD  can be defined. he stress-charge formulation of the constitutive relation for 

piezoelectric material with these initial fields are expressed as: 

 ( ) ; ( )T       0 E 0 r 0 SS S c ε ε e E D D e ε ε ε E   (8) 

Here, ε  is the strain, S  is the stress, E  is the electric field, and D  is the electric displacement 

field. The material properties, Ec , e , and Sε  correspond to the material stiffness tensor, piezoelectric 

coupling coefficients tensor, written in matrix form, and the electric permittivity matrix. Initial 

stresses in the QD and its carrier matrix are functions of stress-temperature coefficients for the 

corresponding material, while the initial strains in the QD correspond to the values of effective lattice 

mismatch strains for the whole system. The initial strain in the carrier matrix is assumed zero. The 

initial strain and stress tensors and the remanent electric displacement vector in GaN QD take the 

form: 
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where T is the temperature. 1( )z , 3( )z , 3( )p z  and ( )spP z  are graded in the GaN QD according to 

eq. (6), and uniform in the AlN host matrix. Convergent solution with smooth and accurate 

distributions of the electromechanical quantities along the axis of symmetry (r = 0) was achieved for 

the truncated conical QD without WL using 12,366 higher order triangular elements with “extra fine” 

mesh in the matrix domain (max. element size m = 1.2 nm) that is refined as we approach the domain 

of the QD where m = 0.1 nm, as can be seen in Fig. 1 (right). 

Results  

The results of the ungraded case are in very good agreement with the results in [1] and [9]. Figure 2 

shows the effect of the material property ratio and lattice mismatch strain ratio on the z-component of 

electric field, the radial and transverse strain components of a truncated FGQD system without WL. 

We assume a constant temperature of 300 K and linear grading (n = 1). The case of (  =   = 0) 

corresponds to ungraded structure and is added to facilitate the comparison. It can be observed that as 

 increases, indicating increased intensity of material parameters in the growth direction, or  

decreases, indicating decreased lattice mismatch strain in the growth direction, zE  increases at the 

base of the FGQD and decreases at its top. So the case ( = -1/3;  = 1/3) gave the maximum 
zE  at the 

base of the QD, and the minimum at the top. The effect of  is much more significant on rr  than . 

As  decreases, rr  increases at the base of the FGQD and decreases at its top. It is interesting to 

note that the significance of  and   on zz  are of about the same order. Increasing  or  will result in 

higher zz  at the base of the FGQD and lower at the top. The case ( =  = 1/3) maximizes zz  at the 

base of the QD. This case also resulted in tensile, rather than compressive, zz  at the top of the QD. 

The opposite case ( =  = -1/3) has opposite effects. Grading proved to be another effective tuning 

parameter that significantly alters the distributions of electromechanical fields in QD systems. 

Fig. 3 shows the effect of power law index (n) on the electric potential and strain components along 

the z-axis at 0r   in the truncated conical GaN/AlN FGQD with  = -1/3;  = 1/3 and T = 300 K. It 
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can be observed that as n increases, the electric potential difference across the thickness of the FGQD 

(  ), 
rr  at the center of the QD, and zz  inside the QD and in the host matrix increase.  

  

Fig. 2. Effect of initial lattice mismatch strain ratio   and material property ratio   on Ez, rr  and zz  in truncated 

conical GaN/AlN FGQD without WL for n = 1, T = 300 K. 

       

Fig. 3. Effect of power law index (n) and material property ratio   on ϕ, rr  and zz  in truncated conical GaN/AlN 

FGQD without WL for  = -1/3;  = 1/3, T = 300 K. 
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