November 13, 2009 MATH 680A

Homework Assignment 3

Due Mon. Nov. 30, 2009, in class.

- 1. Show that every closed convex set K in a Hilbert space has a unique element of minimum norm. [Adapt the proof of the Lemma on Orthogonal Projection which addresses the case when K is a affine.]
- 2. If $f \in L^p \cap L^\infty$ then
 - (a) $f \in L^q$ for all q > p and $||f||_q \le ||f||_{\infty}^{1-\lambda} ||f||_p^{\lambda}$, where $\lambda = \frac{p}{q}$.
 - (b) $||f||_{\infty} = \lim_{q \to \infty} ||f||_q$.
- 3. Show that $L^{\infty}(\mathbb{R}) \neq \bigcap_{p \geq 1} L^p(\mathbb{R})$ (give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is in L^p for all $p \geq 1$ but not in L^{∞} .
- 4. Suppose $0 < p_0 < p_1 \le \infty$. Find examples of functions f on $(0, \infty)$ (with Lebesgue measure) such that $f \in L^p$ if and only if (a) $p_0 (b) <math>p_0 \le p \le p_1$ (c) $p = p_0$. [Look at the example of the functions $f(x) = x^{-a} |\log x|^b$.]
- 5. If $0 , the formula <math>\rho(f, g) = \int |f g|^p d\mu$ defines a metric on L^p that makes L^p into a complete metric space. (To show completeness one can adapt the proof we did in class for $p \ge 1$).
- 6. (a) If X is a linear space with an inner product, show that the parallelogram law holds:

$$||x+y||^2 + ||x-y||^2 = ||x||^2 + ||y||^2, \quad x, y \in X.$$

- (b) Show that the norm on L^p does not come from an inner product (except in the trivial case when $\dim(L^p) \leq 1$).
- 7. In this problem l^p , $p \in \{1, \infty\}$ denotes $L^p(\mathbb{N})$ with the counting measure. Define $\phi_n \in (l^\infty)^*$ by $\phi_n(f) = \frac{1}{n} \sum_{j=1}^n f(j)$. Then ϕ defined for each $f \in l^\infty$ by $\phi(f) = \lim_{n \to \infty} \phi_n(f)$ is an element of $(l^\infty)^*$ which does not come from any element of l^1 .
- 8. If $g \in L^{\infty}(\mathbb{R}^n)$, the operator T defined by Tf = fg is bounded on $L^p(\mathbb{R}^n)$ for $1 \leq p \leq \infty$. Its operator norm is at most $\|g\|_{\infty}$.