October 14, 2009 MATH 680A

Homework Assignment 2

Due Wed. Oct. 28, 2009, in class.

- 1. If X is a normed space, the closure of any subspace is a subspace.
- 2. Let X be a Banach space.
 - (a) If $T \in \mathcal{L}(X,X)$ and ||I T|| < 1 where I is the identity operator, then T is invertible; in fact, the series $\sum_{0}^{\infty} (I T)^{n}$ converges in $\mathcal{L}(X,X)$ to T^{-1} .
 - (b) If $T \in \mathcal{L}(X,X)$ is invertible and $||S-T|| \le ||T^{-1}||^{-1}$ then S is invertible. Thus the set of invertible operators is open in $\mathcal{L}(X,X)$.
- 3. If A is a nonempty set and $f:A\to [0,+\infty]$ is a nonnegative function we may define

$$\sum_{\alpha \in A} f(\alpha) = \sup \left\{ \sum_{\alpha \in F} f(\alpha) : F \subset A, F - \text{finite} \right\}$$

(this coincides with the definition of a sum of a series if $A = \mathbb{N}$. We set

$$\ell^2(A) = \big\{ f : A \to \mathbb{C} : \sum_{\alpha \in A} |f(\alpha)|^2 < +\infty \big\}.$$

(which is a linear space) and define the inner product on $\ell^2(A)$ as $\langle f, g \rangle = \sum_{a \in A} f(\alpha) \overline{g(\alpha)}$ Show that $\ell^2(A)$ is a Hilbert space.

- 4. Show that every closed convex set in a Hilbert space has a unique element of minimal norm. (Hint: look at part (a) of the Theorem on Orthogonal Projection).
- 5. (See page 153 in Folland for definition of quotient space). Let X be a normed vector space and M a proper closed subspace of X.
 - (a) $||x + M|| = \inf\{||x + y|| : y \in M\}$ is a norm on X/M.
 - (b) For any $\varepsilon > 0$ there exists $x \in X$ such that ||x|| = 1 and $||x + M|| \ge 1 \varepsilon$
 - (c) The projection map $\pi(x) = x + M$ from X to X/M has norm 1.
 - (d) If X is complete, so is X/M. (Use the criterion of completeness using absolutely convergent series)
- 6. If $\|\cdot\|$ is a seminorm on the vector space X, let $M = \{x \in X : \|x\| = 0\}$. Then M is a subspace, and the map x + M is a norm on X/M.
- 7. Let K be a convex set in a real linear space X, and let $p_K(x)$ denote the gauge function of K. Then $p_K(x) < 1$ if and only if x is an interior point of K.