April 24, 2008 MATH 592A

Homework Assignment 5

Due on Tuesday, May 6, 2008, in class.

1. Let $(\varphi_n)_{n=1}^{\infty}$ be an orthonormal basis in $L^2(\Omega)$. Prove that if

$$f = \sum_{n=1}^{\infty} c_n \, \varphi_n$$

(the series converges in the sense of L^2) then $c_n = (f, \varphi_n)$. Hint: you need to justify the usual formal argument that the series may be multiplied term-by-term by a basis function φ_m ...

- 2. Fourier series on $(0, 2\pi)$.
 - (a) Under what conditions on the coefficients c_n does the Fourier series $\sum_{n=-\infty}^{\infty} c_n e^{inx}$ represent a real-valued function?
 - (b) If $f \in L^2(0,2\pi)$ then we have both

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$
 and $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$.

Find the relation between c_n and a_n , b_n .

- 3. Solve Problem 6.1 from the book.
- 4. Solve Problem 6.2 from the book.
- 5. Solve Problem 8.3 from the book.
- 6. Energy method for the heat equation
 - (a) Let u be a smooth solution of

$$u_t - \Delta u = 0$$
 in $\Omega \times (0, T)$
 $u = 0$ on $\Gamma \times (0, T)$.

Show that for any $\Phi: \mathbb{R} \to \mathbb{R}$, smooth, convex, and with $\Phi'(0) = 0$

$$\frac{d}{dt} \int_{\Omega} \Phi(u(x,t)) \, dx \le 0.$$

[Hint: Multiply the heat equation by $\Phi'(u)$ and integrate by parts.]

(b) Use part (a) to deduce the uniqueness of solutions of the problem

$$u_t - \Delta u = f$$
 in $\Omega \times (0, T)$
 $u = \varphi(x, t)$ on $\Gamma \times (0, T)$
 $u(x, 0) = g(x)$ in Ω .

(c) Show that $\forall T > 0$,

$$\int_0^T \|\nabla u\|^2 dt \le \frac{1}{2} \|u_0\|^2.$$

[Hint: use problem 1(a) with $\Phi(u) = u^2$.]

(d) Show that

$$\frac{d}{dt}(t\|\nabla u\|^2) + 2t\|\Delta u\|^2 = \|\nabla u\|^2.$$

[Hint: Multiply the heat equation by $-t\Delta u$ and integrate by parts.]

(e) Use parts (a) and (b) to show the estimate

$$\|\nabla u\| \le \frac{1}{\sqrt{2t}} \|u_0\|.$$

7. Solve one of the following

(a) Does there exist a unique solution of the Cauchy problem

$$x(x^2 + y^2) u_x + y^3 u_y = 0, \quad u|_{y=0} = 1$$

in a neighborhood of the point $(x_0, 0)$ on the x-axis?

(b) Solve by the method of characteristics:

$$(1+x^2)u_x + u_y = 0$$
, $u|_{y=0} = g(x)$.

In what region of the (x, y)-plane is the solution uniquely determined by the data g(x)?