February 25, 2008 MATH 592A

Homework Assignment 3

Due on Tuesday, Mar. 3, 2008, in class.

1. (Problem 2.6 in the book) Give variational formulations and prove the existence of solutions of

$$-u'' = f \quad \text{in} \quad \Omega = (0, 1)$$

with the boundary conditions

- (b) u(0) = u'(1) = 0,
- (c) -u'(0) + u(0) = u'(1) = 0.
- 2. (Problem 2.7 in the book) Consider the "beam equation"

$$u^{(4)} = f$$
 in $\Omega = (0, 1)$

- (b) u(0) = u''(0) = u(1) = u''(1) = 0,
- (c) u(0) = u'(0) = u'(1) = u'''(1) = 0.

Give variational formulations and investigate existence and uniqueness of solutions to these problems.

- 3. Prove that the function $\Phi(x) = \frac{1}{4\pi|x|}$, $x = (x_1, x_2, x_3) \in \mathbb{R}^3 \setminus \{0\}$ satisfies
 - (a) $|\Phi_{x_i}(x)| \le \frac{C}{|x|^2}$, $|\Phi_{x_i x_j}(x)| \le \frac{C}{|x|^3}$, i, j = 1, 2, 3.
 - (b) $(\Phi, \Delta \varphi) = -\varphi(0), \ \forall \varphi \in C_0^{\infty}(\mathbb{R}^3).$

(The function $\Phi(x)$ is the fundamental solution of Laplace's equation on \mathbb{R}^3 .)

4. Does the maximum principle hold for smooth solutions of

$$\Delta u + cu = 0$$
, in Ω ,

with c > 0, where $\Omega \subseteq \mathbb{R}^n$ is a bounded domain? If yes, give a proof; if no give a counterexample.

5. (Problem 3.4 from the book) Prove Friedrichs' inequality

$$||v||_{L^2(\Omega)} \le C \Big(||\nabla v||_{L^2(\Omega)}^2 + ||v||_{L^2(\Gamma)}^2 \Big)^{1/2}, \quad \text{for} \quad v \in C^1(\overline{\Omega}),$$

where Ω is a bounded domain in \mathbb{R}^n with (smooth) boundary Γ . Hint: Integrate by parts in the identity $\int_{\Omega} v^2 dx = \int_{\Omega} v^2 \Delta \varphi dx$, where $\varphi(x) = \frac{1}{2n} |x|^2$.

6. (Problem 3.5 from the book) Prove

$$||v|| \le C (||\nabla v||^2 + (\int_{\Omega} v \, dx)^2)^{1/2}, \text{ for } v \in C^1(\overline{\Omega}),$$

where Ω is the unit square in \mathbb{R}^2 .