MATH 592A May 9, 2008

Exam questions

1. Formulate and prove the maximum principle for solutions of second-order ODEs

$$-(au')' + bu' + cu = f.$$

State the conditions on the coefficients a(x), b(x), c(x) under which the maximum principle is valid.

2. Prove the stability estimate for the solutions of the boundary-value problem

$$-(au')' + bu' + cu = f$$
, in $\Omega = (0, 1)$,
 $u(0) = u_0$, $u(1) = u_1$,

in the form

$$\max_{\Omega} |u| \leqslant \max\{|u_0|, |u_1|\} + C \max_{\Omega} |f|.$$

State the conditions on the coefficients a(x), b(x), c(x) under which the result is valid. Use the stability estimate to prove uniqueness of solutions of the boundary-value problem.

3. For the boundary-value problem

$$-(au')' + cu = f$$
 in $\Omega = (0, 1),$
 $u(0) = 0, \quad u(1) = 0,$

define the Green's function G(x,y) and prove that the solution is represented as

$$u(x) = \int_0^1 G(x, y) f(y) dy.$$

State the conditions on the coefficients a(x), c(x) under which the result is valid.

4. Let G(x,y) be Green's function for the problem

$$-(au')' + bu' + cu = f \text{ in } \Omega = (0, 1),$$

$$u(0) = 0, \quad u(1) = 0.$$

Find an explicit representation for the solution of the boundary-value problem with the conditions $u(0) = u_0$, $u(1) = u_1$.

5. Formulate and prove the lemma on the orthogonal projection in a Hilbert space.

- 6. Formulate and prove the Riesz representation theorem
- 7. Let $\Omega = (-1,1)^2 \subseteq \mathbb{R}^2$. Define the Sobolev space $H^1(\Omega)$. For which α is the function $f(x) = |x|^{\alpha}$ in $H^1(\Omega)$?
- 8. Formulate and prove Poincare's inequality for functions $v \in H_0^1(0,1)$.
- 9. Define the notion of weak solution of the boundary-value problem

$$-(au')' + bu' + cu = f \text{ in } \Omega = (0, 1),$$

$$u(0) = 0, \quad u(1) = 0$$

10. State the Lax-Milgram theorem and use it to prove that the variational formulation of

$$-(au')' + bu' + cu = f$$
 in $\Omega = (0, 1),$
 $u(0) = 0, \quad u(1) = 0$

has a unique weak solution. State the conditions on the coefficients a(x), b(x), c(x) under which the result is valid.

11. Formulate and prove the Dirichlet principle for the weak solution of

$$-(au')' + cu = f$$
 in $\Omega = (0, 1),$
 $u(0) = 0, \quad u(1) = 0.$

(Theorem A.2). State the conditions on the coefficients a(x), c(x) under which the result is valid.

12. Define the fundamental solution of Laplace's equation on \mathbb{R}^n and prove that it satisfies

$$(\Phi, \Delta \varphi) = -\varphi(0), \quad \forall \varphi \in C_0^{\infty}(\mathbb{R}^n)$$

for n=2.

13. Give a variational formulation of the boundary-value problem

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = g \quad \text{on } \Gamma$$

and use Lax-Milgram's theorem to prove existence, uniqueness and continuous dependence on the data. Here Ω is a bounded domain in \mathbb{R}^n , with smooth boundary Γ .

14. Show that if

$$\lambda_1 = \min_{0 \neq v \in H_0^1(\Omega)} \frac{\|\nabla v\|^2}{\|v\|^2},$$

and the minimum is achieved for a certain function $\varphi_1 \in H_0^1$ then λ_1 and φ_1 are an eigenvalue and an eigenfunction of $-\Delta$ with the boundary conditions $\varphi = 0$ on Γ . (Theorem 6.2).

- 15. Define what it means for a family $(\varphi_n)_{n=1}^{\infty}$ to be an orthonormal basis in a Hilbert space V. If $(\varphi_n)_{n=1}^{\infty}$ is an othonormal set show that the best approximation of an element $v \in V$ by the first N functions φ_n is given by $\sum_{n=1}^{N} c_n \varphi_n$, where c_n are the Fourier coefficients of v.
- 16. Assume that the problem

$$-\Delta \varphi = \lambda \varphi \quad \text{in } \Omega$$

$$\varphi = 0 \quad \text{on } \Gamma$$

has infinitely many eigenfunctions $(\varphi_n)_{n=1}^{\infty}$ and that the corresponding eigenvalues λ_n are positive and increase to infinity. Prove that $(\varphi_n)_{n=1}^{\infty}$ form an orthonormal basis of $L^2(\Omega)$.

17. Derive the formula for the fundamental solution of the heat equation U(x,t) and show formally that the solution of the Cauchy problem with the initial data $u(x,0) = u_0(x)$, $x \in \mathbb{R}^n$ is given by

$$u(x,t) = \int_{\mathbb{R}^n} U(x-y,t) u_0(y) dy.$$

18. If $u_0(x)$, $x \in \mathbb{R}^n$, is bounded, continuous, show that the function

$$u(x,t) = \int_{\mathbb{R}^n} U(x-y,t) u_0(y) dy.$$

is a solution of the heat equation for t > 0 and satisfies

$$\lim_{(x,t)\to(x_0,0)} u(x,t) = u_0(x_0).$$

Here U(x,t) is the fundamental solution of the heat equation on \mathbb{R}^n .

19. Solve the problem

$$u_t - \Delta u = 0$$
 in $\Omega \times \mathbb{R}_+$
 $\varphi = 0$ on $\Gamma \times \mathbb{R}_+$
 $u(x,0) = u_0(x), \quad x \in \Omega,$

using separation of variables. Show that the solution satisfies

$$||u(\cdot,t)|| \leqslant ||u_0||.$$

20. Describe the method of characteristics for the solution of a first-order linear equation

$$a(x,y)u_x + b(x,y)u_y = f(x,y)$$

$$u(x,0) = g(x), \quad x \in \mathbb{R}.$$

Under what conditions on the functions a, b does the problem have solutions in a neighborhood of the x-axis for any smooth f and g?

21. Derive D'Alembert's formula for the solution of

$$u_{tt} - u_{xx} = 0, \quad (x, t) \in \mathbb{R}^2$$

 $u(x, 0) = u_0(x), \quad u_t(x, 0) = v_0(x), \quad x \in \mathbb{R}.$

22. Prove that the total energy

$$\mathcal{E}(t) = \frac{1}{2} \int_{\Omega} u_t(x,t)^2 + |\nabla u(x,t)|^2 dx$$

is constant on the solutions of

$$u_{tt} - \Delta u = 0, \quad \Omega \times \mathbb{R}$$

 $u = 0 \quad \text{on } \Gamma \times \mathbb{R}.$

23. Prove using energy estimates that if

$$u_{tt} - \Delta u = 0$$
, on $\mathbb{R}^n \times \mathbb{R}$
 $u(x,0) = u_0(x)$, $u_t(x,0) = v_0(x)$, $x \in \mathbb{R}^n$,

and u_0 , v_0 vanish in a ball $B(x_0, t_0) \subseteq \mathbb{R}^n$ then $u(x_0, t_0) = 0$. (Finite speed of propagation for the wave equation, Theorem 11.3)

- 24. Define the general form of a symmetric hyperbolic system and state the theorem on the global existence of the Cauchy problem for such system in one spatial dimension. Indicate the method of proof.
- 25. For a symmetric hyperbolic system

$$u_t + \sum_{j=1}^n A_j u_{x_j} + B u = f$$
, in $\mathbb{R}^n \times \mathbb{R}_+$
 $u(\cdot, 0) = u_0$ in \mathbb{R}^n

prove the energy estimate

$$||u(t)|| \le C_t (||u_0|| + (\int_0^t ||f(s)||^2 ds)^{\frac{1}{2}}).$$