Exam questions

1. Formulate and prove the maximum principle for solutions of second-order ODEs

\[-(au')' + bu' + cu = f.\]

State the conditions on the coefficients $a(x)$, $b(x)$, $c(x)$ under which the maximum principle is valid.

2. Prove the stability estimate for the solutions of the boundary-value problem

\[-(au')' + bu' + cu = f, \quad \text{in } \Omega = (0, 1),
\]

\[u(0) = u_0, \quad u(1) = u_1,\]

in the form

\[
\max_{\Omega} |u| \leq \max\{|u_0|, |u_1|\} + C \max_{\Omega} |f|.
\]

State the conditions on the coefficients $a(x)$, $b(x)$, $c(x)$ under which the result is valid. Use the stability estimate to prove uniqueness of solutions of the boundary-value problem.

3. For the boundary-value problem

\[-(au')' + cu = f \quad \text{in } \Omega = (0, 1),
\]

\[u(0) = 0, \quad u(1) = 0,\]

define the Green’s function $G(x, y)$ and prove that the solution is represented as

\[u(x) = \int_0^1 G(x, y) f(y) dy.\]

State the conditions on the coefficients $a(x)$, $c(x)$ under which the result is valid.

4. Let $G(x, y)$ be Green’s function for the problem

\[-(au')' + bu' + cu = f \quad \text{in } \Omega = (0, 1),
\]

\[u(0) = 0, \quad u(1) = 0.\]

Find an explicit representation for the solution of the boundary-value problem with the conditions $u(0) = u_0$, $u(1) = u_1$.

5. Formulate and prove the lemma on the orthogonal projection in a Hilbert space.
6. Formulate and prove the Riesz representation theorem

7. Let $\Omega = (-1, 1)^2 \subseteq \mathbb{R}^2$. Define the Sobolev space $H^1(\Omega)$. For which α is the function $f(x) = |x|^\alpha$ in $H^1(\Omega)$?

8. Formulate and prove Poincare’s inequality for functions $v \in H^1_0(0, 1)$.

9. Define the notion of weak solution of the boundary-value problem

$$-(au')' + bu' + cu = f \quad \text{in } \Omega = (0, 1),$$
$$u(0) = 0, \quad u(1) = 0$$

10. State the Lax-Milgram theorem and use it to prove that the variational formulation of

$$-(au')' + bu' + cu = f \quad \text{in } \Omega = (0, 1),$$
$$u(0) = 0, \quad u(1) = 0$$

has a unique weak solution. State the conditions on the coefficients $a(x), b(x), c(x)$ under which the result is valid.

11. Formulate and prove the Dirichlet principle for the weak solution of

$$-(au')' + cu = f \quad \text{in } \Omega = (0, 1),$$
$$u(0) = 0, \quad u(1) = 0.$$
(Theorem A.2). State the conditions on the coefficients $a(x), c(x)$ under which the result is valid.

12. Define the fundamental solution of Laplace’s equation on \mathbb{R}^n and prove that it satisfies

$$(\Phi, \Delta \varphi) = -\varphi(0), \quad \forall \varphi \in C^\infty_0(\mathbb{R}^n)$$

for $n = 2$.

13. Give a variational formulation of the boundary-value problem

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = g \quad \text{on } \Gamma$$

and use Lax-Milgram’s theorem to prove existence, uniqueness and continuous dependence on the data. Here Ω is a bounded domain in \mathbb{R}^n, with smooth boundary Γ.

14. Show that if

$$\lambda_1 = \min_{\theta \neq v \in H^1_0(\Omega)} \frac{\|\nabla \varphi\|^2}{\|v\|^2},$$
and the minimum is achieved for a certain function \(\varphi_1 \in H_0^1 \) then \(\lambda_1 \) and \(\varphi_1 \) are an eigenvalue and an eigenfunction of \(-\Delta\) with the boundary conditions \(\varphi = 0 \) on \(\Gamma \).

(Theorem 6.2).

15. Define what it means for a family \((\varphi_n)_{n=1}^{\infty}\) to be an orthonormal basis in a Hilbert space \(V \). If \((\varphi_n)_{n=1}^{\infty}\) is an orthonormal set show that the best approximation of an element \(v \in V \) by the first \(N \) functions \(\varphi_n \) is given by \(\sum_{n=1}^{N} c_n \varphi_n \), where \(c_n \) are the Fourier coefficients of \(v \).

16. Assume that the problem

\[
-\Delta \varphi = \lambda \varphi \quad \text{in } \Omega \\
\varphi = 0 \quad \text{on } \Gamma
\]

has infinitely many eigenfunctions \((\varphi_n)_{n=1}^{\infty}\) and that the corresponding eigenvalues \(\lambda_n \) are positive and increase to infinity. Prove that \((\varphi_n)_{n=1}^{\infty}\) form an orthonormal basis of \(L^2(\Omega) \).

17. Derive the formula for the fundamental solution of the heat equation \(U(x, t) \) and show formally that the solution of the Cauchy problem with the initial data \(u(x, 0) = u_0(x) \), \(x \in \mathbb{R}^n \) is given by

\[
\int_{\mathbb{R}^n} U(x - y, t) u_0(y) \, dy.
\]

18. If \(u_0(x), x \in \mathbb{R}^n \), is bounded, continuous, show that the function

\[
\int_{\mathbb{R}^n} U(x - y, t) u_0(y) \, dy.
\]

is a solution of the heat equation for \(t > 0 \) and satisfies

\[
\lim_{(x,t) \to (x_0,0)} u(x, t) = u_0(x_0).
\]

Here \(U(x, t) \) is the fundamental solution of the heat equation on \(\mathbb{R}^n \).

19. Solve the problem

\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u &= 0 \quad \text{in } \Omega \times \mathbb{R}^+ \\
\varphi &= 0 \quad \text{on } \Gamma \times \mathbb{R}^+ \\
u(x, 0) &= u_0(x), \quad x \in \Omega,
\end{align*}
\]

using separation of variables. Show that the solution satisfies

\[
\|u(\cdot, t)\| \leq \|u_0\|.
\]
20. Describe the method of characteristics for the solution of a first-order linear equation

\[a(x, y)u_x + b(x, y)u_y = f(x, y) \]
\[u(x, 0) = g(x), \quad x \in \mathbb{R}. \]

Under what conditions on the functions \(a, b \) does the problem have solutions in a neighborhood of the \(x \)-axis for any smooth \(f \) and \(g \)?

21. Derive D’Alembert’s formula for the solution of

\[u_{tt} - u_{xx} = 0, \quad (x, t) \in \mathbb{R}^2 \]
\[u(x, 0) = u_0(x), \quad u_t(x, 0) = v_0(x), \quad x \in \mathbb{R}. \]

22. Prove that the total energy

\[\mathcal{E}(t) = \frac{1}{2} \int_{\Omega} u_t(x, t)^2 + |\nabla u(x, t)|^2 \, dx \]

is constant on the solutions of

\[u_{tt} - \Delta u = 0, \quad \Omega \times \mathbb{R} \]
\[u = 0 \quad \text{on} \quad \Gamma \times \mathbb{R}. \]

23. Prove using energy estimates that if

\[u_{tt} - \Delta u = 0, \quad \text{on} \quad \mathbb{R}^n \times \mathbb{R} \]
\[u(x, 0) = u_0(x), \quad u_t(x, 0) = v_0(x), \quad x \in \mathbb{R}^n, \]

and \(u_0, v_0 \) vanish in a ball \(B(x_0, t_0) \subseteq \mathbb{R}^n \) then \(u(x_0, t_0) = 0 \). (Finite speed of propagation for the wave equation, Theorem 11.3)

24. Define the general form of a symmetric hyperbolic system and state the theorem on the global existence of the Cauchy problem for such system in one spatial dimension. Indicate the method of proof.

25. For a symmetric hyperbolic system

\[u_t + \sum_{j=1}^{n} A_j u_{x_j} + Bu = f, \quad \text{in} \quad \mathbb{R}^n \times \mathbb{R}_+ \]
\[u(\cdot, 0) = u_0 \quad \text{in} \quad \mathbb{R}^n \]

prove the energy estimate

\[\|u(t)\| \leq C_t \left(\|u_0\| + \left(\int_0^t \|f(s)\|^2 \, ds \right)^{\frac{1}{2}} \right). \]