MATH 480, Review for Midterm Test 2

Test coverage

  1. Fourier series
    1. Complex form of Fourier series (1.5)
    2. Sturm-Liouville eigenvalue problems (1.6; lecture notes)
      • Eigenvalues, eigenfunctions, orthogonality (1.6.1-2)
      • Examples; transcendental eigenvalues (1.6.3)
      • Positivity of eigenvalues (1.6.4)
  2. Boundary-value problems in rectangular coordinates
    1. Derivation of the heat equation in multiple dimensions (2.1.1-2)
    2. Boundary conditions (2.1.3)
    3. Time-periodic solutions (2.1.5-6)
    4. Homogeneous boundary conditions: solution with Fourier method (2.2.1)
    5. Asymptotic behavior and relaxation time (2.2.3)
    6. Uniqueness of the solutions (2.2.4)
    7. Nonhomogeneous boundary conditions (2.3)
    8. Temporally nonhomogeneous problems (2.3.3)
    9. The vibrating string: derivation and linearized model (2.4.1-2)
    10. Solution for the vibrating string with the Fourier method (2.4.3)
    11. D'Alembert solution (2.4.5, lecture notes)
    12. Multidimensional problems: Laplace's and heat equations in 2 and 3D (2.5.2)
    13. Multiple Fourier series (2.5)
    14. Vibrations of a rectanguler membrane. Nodal lines (2.5.4)

Important concepts

Theoretical material

Important types of problems