October 18, 2012 MATH 480

Homework Assignment 6 – Additional problems

Quiz on Thursday, October 25, 2012

- 1. Redo problem 3 in 1.5 for the function $\sin x$ on (-L, L) where L is not a multiple of π . [Hint: Use the complex Fourier series of e^{ix} on (-L, L).]
- 2. [Refer to problems 18-20 in 1.1] Without computing the actual Fourier coefficients, predict which of the coefficients in the Fourier expansion of the function $|\sin x|$ on $-\pi < x < \pi$ must vanish.
- 3. Same question for the function $|\cos x|$ on $-\pi < x < \pi$.
- 4. Show that a function f(x) is real-valued if and only if its complex Fourier coefficients satisfy $\alpha_{-n} = \overline{\alpha_n}$.
- 5. Write each of the following equations in Sturm-Liouville form $(s\varphi')' + (\lambda \rho q)\varphi = 0$ and give the orthogonality condition satisfied by the eigenfunctions φ corresponding to distinct values of λ :
 - (a) $x^2 \varphi'' + \lambda \varphi = 0, 1 < x < 2$
 - (b) $\sin x \varphi'' + \cos x \varphi' + \lambda \sin x \varphi = 0, 0 < x < \pi$
 - (c) $\varphi'' \varphi' + \lambda \varphi = 0$, 3 < x < 5
 - (d) $(x\varphi)'' + \lambda x\varphi = 0, 0 < x < 2.$
- 6. Find the solutions (φ_n, λ_n) of the Sturm-Liouville problem

$$\varphi'' + \frac{1}{x}\varphi' + \frac{\lambda}{x^2}\varphi = 0, \quad 1 < x < 2$$

$$\varphi(1) = 0, \quad \varphi(2) = 0.$$

[Hint: Use solutions of the Euler differential equation, Appendix A.1.4.]