Thu, July 28, 2011 MATH 462, Midterm 1 Prof. V. Panferov

Name: (print)

p)
CSUN ID No. : &%%blfcf .

This test includes 6 questions in the main part (44 points in total) and one bonus question

worth an extra 6 points. Please check that your copy of the test has 7 pages. The duration of
the test is 60 minutes.

Your scores: (do not enter answers here)

1 2 3 4 5 6 7 total

Important: The test is closed books/notes. Graphing calculators are not permitted. Show

all your work.

1. (6 points) Let V be a vector space over a field F. Prove, using the axioms of a vector
space that for every z in V we have (—z) = (—1)=.
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2. (8 points) Let V' be a vector space of dimension n.

(a) If S is a linearly independent set in V' that contains exactly n vectors, prove that S

is a basis of V.
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(b) If G is a generating set in V that contains exactly n vectors, prove that G is a basis
of V.
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3. (8 points) Let W; and W, be subspaces of a vector space V. Prove that V' is a direct
sum of W; and W, if and only if each vector in V' can be represented uniquely as z; + x5
where z; € W, and z, € Ws.
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4. (8 points) Consider the linear transformation T : Po(R) — M,,2(R) defined by

Find bases for R(T') and N(T) and determine the rank and the nullity of T'.
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5. (6 points) Define T : My, 2(F) — Mayo(F) by T(A) = A*. Compute the matrix of T in
the standard basis of Mays(F'):
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6. (8 points) State which of the following statements are true or false. (You do not need

to show your work.)

Notations V and W are used for vector spaces over a field F.

(a) If a vector space has finite basis then the number of vectors in any basis is the

same.

(b) The empty set is a subspace of any vector space.
(c) If Wi and W, are subspaces of V and dim(W;) < dim(Ws) then W) C W,.
(d) T:V — W is linear if and only if Vz,y € V Va € F, T(z + ay) = T(z) + aT'(y).

(e) The dimension of M, xn(F) is m +n.

(f) f T € £(V;W) then rank(T) + nullity (T) = dim(W).

(g) If T and U are linear transformations and [T]} = [U]j then T =U.
)

(h) If T € £ (V;W) is onto, then the image of any linearly independent set in V' is

linearly independent in W.
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7. (bonus: 6 points) Let ¥V and W be vector spaces such that dim(V') = dim(W) and let
T :V — W be linear. Show that there exists ordered bases § and -y such that [T} is a

diagonal matrix.
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The end.



