Name: (print)

CSUN ID No.: Solutions.

This test includes 6 questions in the main part (44 points in total) and one bonus question worth an extra 6 points. Please check that your copy of the test has 7 pages. The duration of the test is 60 minutes.

Your scores: (do not enter answers here)

1	2	3	4	5	6	7	total

Important: The test is closed books/notes. Graphing calculators are not permitted. Show all your work.

1. (6 points) Let V be a vector space over a field F. Prove, using the axioms of a vector space that for every x in V we have (-x) = (-1)x.

$$(-1) \times = (-1) \times + 0 = (-1) \times + (x + (-x))$$

$$= (-1) \times + (-x) + (-x)$$

$$= (-1 + 1) \times + (-x) = 0 \times + (-x)$$

$$= (0 \times + 0) + (-x)$$

$$= (0 \times + (x + (-x))) + (-x)$$

$$= ((0 \times + x) + (-x)) + (-x)$$

$$= ((0 + 1) \times + (-x)) + (-x)$$

$$= (x + (-x)) + (-x)$$

$$= (-x)$$

- 2. (8 points) Let V be a vector space of dimension n.
 - (a) If S is a linearly independent set in V that contains exactly n vectors, prove that S is a basis of V.

By contradiction: if S is not a lasis

then S is not a generating set =>

Then S is not a generating set =>

Then S is not a generating set =>

S v el v v el span (s)

S v (v) to a linearly ondep. set

with n+1 vectors,

a contradiction with the replacement

theorem.

(b) If G is a generating set in V that contains exactly n vectors, prove that G is a basis of V.

By contradiction: of Go not a haris

then Gis linearly dependent

one of the vectors on Gibs a

inear combination of the romaining

n-1 vectors

the remaining n-1 vectors form a

generating set,

a contradiction with the replacement

theorem.

3. (8 points) Let W_1 and W_2 be subspaces of a vector space V. Prove that V is a direct sum of W_1 and W_2 if and only if each vector in V can be represented uniquely as $x_1 + x_2$ where $x_1 \in W_1$ and $x_2 \in W_2$.

Assume that
$$V=X_1+X_2=X_1'+X_2'$$
 - another represente

$$= \sum_{x_1 - x_1'} x_2' - x_2 \in W_1 \cap W_2 = \{0\}.$$

$$\Rightarrow x_1 = x_1', x_2 = x_2'.$$

$$X_{1}^{\prime}=X_{1},$$

$$X_{2}^{\prime}=X_{2}.$$

$$X = \begin{array}{cccc} 0 + X & = & X + O \\ 0 & 0 & 0 & 0 \\ w_1 & w_2 & w_1 & w_2 \end{array}$$

4. (8 points) Consider the linear transformation $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by

$$T(f(x)) = egin{pmatrix} f(1) - f(2) & 0 \ 0 & f(0) \end{pmatrix}$$

Find bases for R(T) and N(T) and determine the rank and the nullity of T.

$$T(1) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, T(x) = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, T(x^{2}) = \begin{pmatrix} -3 & 0 \\ -6 & 0 \end{pmatrix}$$

$$\Rightarrow R(T) = span \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix}$$

$$= span \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix}$$

$$= span \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix}$$

$$= span \begin{pmatrix} R(T) \\ T \end{pmatrix} = \mathcal{D}.$$

$$= 3 - 2 = 1.$$

$$Tf f(x) = a + ex + cx^{2}$$

$$f(x) - f(x) = -e - 3c = 0 \Rightarrow e = -3c$$

$$f(x) = a = 0$$

$$= f(x) = c(x^{2} - 3x)$$

$$N(T) = span (x^{2} - 3x)$$

5. (6 points) Define $T: M_{2\times 2}(F) \to M_{2\times 2}(F)$ by $T(A) = A^t$. Compute the matrix of T in the standard basis of $M_{2\times 2}(F)$:

$$\alpha = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}.$$

$$T \begin{pmatrix} 1 & 0 \\ 6 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, T \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

6. (8 points) State which of the following statements are true or false. (You do not need to show your work.)

Notations V and W are used for vector spaces over a field F.

- (a) If a vector space has finite basis then the number of vectors in any basis is the same.
- (b) The empty set is a subspace of any vector space.
- (c) If W_1 and W_2 are subspaces of V and $\dim(W_1) < \dim(W_2)$ then $W_1 \subseteq W_2$.
- (d) $T: V \to W$ is linear if and only if $\forall x, y \in V \ \forall a \in F, T(x + ay) = T(x) + aT(y)$.
- (e) The dimension of $M_{m \times n}(F)$ is m + n.
- (f) If $T \in \mathcal{L}(V; W)$ then rank(T) + nullity(T) = dim(W).
- (g) If T and U are linear transformations and $[T]^{\gamma}_{\beta} = [U]^{\gamma}_{\beta}$ then T = U.
- (h) If $T \in \mathcal{L}(V; W)$ is onto, then the image of any linearly independent set in V is linearly independent in W.

Answers:	
(a) T	(corollary of replacement theorem.)
(b) F	(any subspace has to contain at least the zero vector.) (take a line and a plane in IR3 such that a line is not contained in the plane) (dim Mmxn (F) = mn)
(c) F	the zero vector.
(d) T	(take a time and a peane in 18
(e) F	in the plane
(f) F	(dim Mmxn (F) = mn)
(g) T	(rank (T) + nullity (T) = dim (V).)
(h) F	(linear transf. is determined fully by
(ii) <i>f</i>	its values on a dasis.)
	(not unless To one-to-one.)

7. (bonus: 6 points) Let V and W be vector spaces such that $\dim(V) = \dim(W)$ and let $T: V \to W$ be linear. Show that there exists ordered bases β and γ such that $[T]^{\gamma}_{\beta}$ is a diagonal matrix.

Let $\beta = (v_1...v_n)$ and $\gamma = T(\beta)$. then $[T]_{\beta}^{\gamma}$ is the nxn identity matrix.