Mon, Nov 21, 2011 MATH 462, Midterm 2 Prof. V. Panferov

Name: (print)

Sotertons.

This test includes 6 questions in the main part (46 points in total) and one bonus question
worth an extra 6 points. Please check that your copy of the test has 7 pages. The duration of

CSUN ID No. :

the test is 75 minutes.

Your scores: (do not enter answers here)

1 2 3 4 3 6 7 total

Important: The test is closed books/notes. Graphing calculators are not permitted. Show

all your work.

1. (6 points) Let V and W be finite-dimensional vector spaces and let T : V — W be a
linear transformation. Suppose that 3 is a basis of V. If T'(8) is a basis of W prove that
T is an isomorphism.
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2. (8 points) Compute the characteristic polynomial of the matrix
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3. (8 points) Suppose V is a vector space of dimension n and and T is a linear operator
with 7 distinct eigenvalues. Show that V' can then be represented as a direct sum of

one-dimensional T-invariant subspaces.
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4. (8 points) Give a proof of the statement that if B, A € M,x,(F') and B is obtained from
A by interchanging any two rows, then det(B) = — det(A). [You may use the defitions
and other theorems concerning determinants.]
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5. (8 points) Define T : P»(R) — P (R) by T(f(z)) = f(z) + f(2)z. Diagonalize T by
finding a basis 8 and a diagonal matrix D such that [T]|g = D.
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6. (8 points) State which of the following statements are true or false. (You do not need
to show your work.)

Notations V and W are used for vector spaces over a field F'; T' denotes a linear trans-

formation, and A and B denote matrices.

(a) If A and B are similar matrices and A is invertible then B is invertible.

(b) A linear operator T on a finite-dimensional vector space V is diagonalizable if and
only if the algebraic multiplicity of every eigenvalue A equals the dimension of Ej.

(c) If V is a vector space over C then every linear operator T': V' — V has at least one

eigenvalue.
(d) M,y3(F) is isomorphic to F®.
(e) There exists a square matrix with no eigenvectors.

(f) Every polynomial of degree n with the leading coefficient (—1)" is a characteristic
polynomial of some linear operator.

(g) The sum of two eigenvectors of an operator T is always an eigenvector of 7.

(h) If T is a linear operator on a finite-dimensional vector space V, then for any v € V
the T-cyclic subspace generated by v is the same as the T-cyclic subspace generated
by T(v).
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7. (bonus: 6 points) If B and C' are matrices in My.n(F), is it always true that BC and
C'B are similar? Does it make any difference whether B and C' are invertible?
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The end.



