MATH 462: Final exam review questions

- 1. Let $\beta = (v_1, v_2, \dots, v_n)$ be a basis of a vector space V. Prove that every vector in V can be represented uniquely as a linear combination of vectors in β .
- 2. Find a basis $(p_0(x), \ldots, p_n(x))$ for the vector space $P^n(\mathbb{F})$ such that each $p_i(x)$ is a polynomial of degree n. Justify your answer.
- 3. Consider the matrix

$$A(x) = \begin{pmatrix} f_1(x) & a_{12} & \dots & a_{1n} \\ a_{21} & f_2(x) & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & f_n(x) \end{pmatrix},$$

where the diagonal entries $f_1(x), \ldots, f_n(x)$ are polynomials in $P(\mathbb{F})$, and the off-diagonal entries $a_{ij}, i \neq j$ are scalars in \mathbb{F} . Show that $\det(A) \in P(\mathbb{F})$ and

$$\deg A(x) \le \sum_{i=1}^{n} \deg f_i(x).$$

4. (a) If $A \in M^{n \times n}(\mathbb{F})$ is a matrix with entries a_{ij} and $f(t) = \det(A - tI)$, prove that

$$f(t) = (a_{11} - t) \dots (a_{nn} - t) + q(t),$$

where q(t) is a polynomial of degree at most n-2.

- (b) Use part (a) to show that the coefficient at the (n-1)-st power of t in the polynomial f(t) is $(-1)^{n-1} \operatorname{tr}(A)$, where $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$ is the trace of the matrix A.
- 5. Let $A, B \in M^{n \times n}(\mathbb{F})$ be $n \times n$ matrices.
 - (a) Prove that tr(A + B) = tr(A) + tr(B).
 - (b) Prove that tr(AB) = tr(BA).
- 6. If $A, B \in M^{n \times n}(\mathbb{F})$ are similar matrices, prove that tr(A) = tr(B). Hint: use Problem 4.
- 7. Define the operators T and U on the space $P(\mathbb{R})$ of all polynomials in variable x as follows:

$$T(f(x)) = f'(x),$$
 $U(f(x)) = xf(x).$

Is the relation TU = UT valid? Find the operator TU - UT.

8. Assuming that T and U are linear operators on a vector space V, such that TU-UT=I, prove that

$$T^m U - U T^m = m T^{m-1}, \quad m = 1, 2, \dots$$

- 9. Prove that the condition TU UT = I can never be satisfied for operators T and U on a finite-dimensional vector space. [Hint: Use Problems 5 and 6.] Comment: the result of Problem 7 shows that the condition of finite-dimensionality is essential here.
- 10. Let T is a linear operator on a finite-dimensional vector space V. Prove that V = R(T) + N(T) implies $V = R(T) \oplus N(T)$. Give a counter-example to this statement in the case when V is infinite-dimensional.
- 11. A linear operator $T: V \to V$ is called a projection if $T^2 = T$. If $T \neq 0$ is a projection show that the range of T is the eigenspace corresponding to the eigenvalue 1.
- 12. A linear operator $T: V \to V$ is called nilpotent if $T^p = 0$ for certain positive integer p. Prove that if an operator is nilpotent then 0 is its only eigenvalue.
- 13. For the linear operator $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T_A(x) = Ax, x \in \mathbb{R}^3$, where

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

give an example of a one-dimensional and a two-dimensional invariant subspace.

14. Let T be a linear operator on a finite-dimensional vector space V and let W_1 and W_2 be T-invariant subspaces of V such that $V = W_1 \oplus W_2$. Let $\beta = \beta_1 \cup \beta_2$ be a basis for V, such that β_i are bases for W_i , i = 1, 2. Prove that

$$[T]_{\beta} = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, \text{ where } A_i = [T_{W_i}]_{\beta_i}, i = 1, 2.$$

- 15. Let T, U be linear operators on a vector space V, such that UT = TU.
 - (a) Prove that R(U), N(U) are T-invariant.
 - (b) If $W = \{x \in V : \exists p \in \mathbb{N} \ (U^p(x) = 0)\}$ then W is T-invariant.

16. Compute the determinant of a $2k \times 2k$ matrix:

$$\begin{pmatrix} n & 0 & \cdots & \cdots & 0 & m \\ 0 & n & \cdots & \cdots & m & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & n & m & \cdots & 0 \\ 0 & \cdots & m & n & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & m & \cdots & \cdots & n & 0 \\ m & 0 & \cdots & \cdots & 0 & n \end{pmatrix}.$$

- 17. Let $A = \begin{pmatrix} 0 & k \\ 1 & -1 \end{pmatrix}$. Find all $k \in \mathbb{R}$ such that $\lim_{n \to \infty} A^n$ is finite.
- 18. Is there a vector space V and a linear operator T on V such that T has exactly three T-invariant subspaces?
- 19. Let A be the complex matrix

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 & 0 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}.$$

Find the Jordan canonical form of A and a Jordan basis. Hint: