Name: (print)

Each problem is worth 2 points. Show all your work.

- 1. In this problem $\mathbb Q$ denotes the set of all rational numbers.
 - (a) Prove that the set of real numbers \mathbb{R} (with the usual operations) is a vector space over \mathbb{Q} .
 - (b) Prove that the sets

$$\mathbb{Q}[\sqrt{2}] = \{a+b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Q}\}$$
 and $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \{a+b\sqrt{2}+c\sqrt{3} \in \mathbb{R} : a, b, c \in \mathbb{Q}\}$ are subspaces of \mathbb{R} . Find their bases and dimensions.

(c) Prove that the vector space \mathbb{R} over \mathbb{Q} is infinite-dimensional.

2. Consider the set P consisting of all *positive* real numbers. For $x, y \in P$ and $\lambda \in \mathbb{R}$ we introduce operations

$$x \oplus y = xy, \qquad \lambda \odot x = x^{\lambda}.$$

Is the set P with operations \oplus and \odot a vector space? If yes, find a basis and determine the dimension of P.

- 3. (a) Consider the vector space $M^{2\times 2}(\mathbb{R})$ consisting of all 2×2 matrices with real entries. Find a basis $\{A_1,A_2,A_3,A_4\}$ for $M^{2\times 2}(\mathbb{R})$ such that $A_i^2=A_i$ for each i. [Remark: Square matrices A satisfying $A^2=A$ are known as projection matrices.]
 - (b) Find an analogous basis for the vector space $M^{3\times 3}(\mathbb{R})$.

- 4. Let W be a subspace of \mathbb{C}^3 spanned by $u_1 = (1,0,i)$ and $u_2 = (1+i,1,-1)$.
 - (a) Show that u_1 and u_2 form a basis for W.
 - (b) Show that the vectors $v_1 = (1, 1, 0)$ and $v_2 = (1, i, 1+i)$ are in W and form another basis for W.
 - (c) What are the coordinates of u_1 and u_2 in the ordered basis v_1, v_2 ?