Midterm 2 Review Questions

1. Find the supremum and infimum of the set \(S \). Give a proof:
 (a) \(S = \{ x : x^2 - 4x + 3 < 0 \} \)
 (b) \(S = \{ s_n : s_n = \sum_{i=1}^{n} \frac{(-1)^i}{3^i}, n \in \mathbb{N} \} \).

2. If \(A, B \) are nonempty subsets of \(\mathbb{R} \) such that \(\forall x \in A \forall y \in B x \leq y \), prove that \(\sup A = \inf B \) if and only if \(\forall \varepsilon > 0 \exists x_\varepsilon \in A \exists y_\varepsilon \in B \) such that \(y_\varepsilon - x_\varepsilon < \varepsilon \).

3. Prove that \(f(x) = x \sin \frac{\pi}{x} \) is uniformly continuous on \((0, 1] \). Is \(f \) uniformly continuous on \((0, \infty) \)?

4. Prove that \(f : x \mapsto x^{1.01} \) is not uniformly continuous on \([1, \infty) \).

5. If \(x_n \in (a, b) \) is Cauchy, \(f : (a, b) \to \mathbb{R} \) is uniformly continuous, prove that \(f(x_n) \) is Cauchy.

6. Give an example of a function \(f : \mathbb{R} \to \mathbb{R} \) such that \(f \) is not differentiable at any \(x_0 \in \mathbb{R} \), however \(f^2 \) is differentiable at every \(x_0 \in \mathbb{R} \).

7. Give an example of a function \(f : \mathbb{R} \to \mathbb{R} \) such that \(f \) and \(f^2 \) are not differentiable at \(x = 0 \), however \(f^3 \) is differentiable at every \(x_0 \in \mathbb{R} \).

8. Find all real \(\alpha \) such that
 \[f(x) = \begin{cases}
 x^\alpha \cos \frac{\pi}{x}, & x \neq 0 \\
 0, & x = 0
 \end{cases} \]
 is differentiable at \(0 \).

9. Let
 \[f(x) = \begin{cases}
 x(1 - x) + e^{-\frac{1}{x}}, & x > 0 \\
 x, & x \leq 0.
 \end{cases} \]
 Find \(f'(0) \) and \(f''(0) \) if they exist.

10. (see also problems 5.1: 18, 19) Suppose \(f \) is continuous at \(x_0 \) and such that \(f(x_0) \neq 0 \).
 Show there exist constants \(r > 0 \) and \(c_0 > 0 \) such that \(|f(x)| \geq c_0 \) for \(|x - x_0| < r \).

11. Find the lower and the upper Darboux sums for the function \(f(x) = 1 - 2x \) over the interval \([0, 1]\) using the partition \(P_n \) with \(n \) equal subintervals. Compute the limits \(n \to \infty \).
12. (see Theorem 5.6) Prove that if \(f \) is continuous on \([a, b]\) then for any partition \(P = \{t_0, t_1, \ldots, t_n\} \) of \([a, b]\) there exist points \(x_i \in I_i \) such that

\[
\int_a^b f(x) \, dx = \sum_{i=1}^n f(x_i) \Delta x_i,
\]

where \(\Delta x_i = t_i - t_{i-1}, \ I_i = [t_{i-1}, t_i] \).

13. (see problem 5.1.17) Let

\[
f(x) = \begin{cases}
 x \sin \frac{1}{x}, & x \neq 0 \\
 1, & x = 0
\end{cases}
\]

Prove that \(f \) is integrable on \([-1, 1]\) and that \(F(x) = \int_{-1}^x f(t) \, dt \) is differentiable on \((-1, 1)\). Find \(F'(0) \).

14. (Fermat) Compute the integral \(\int_1^2 x^p \, dx \) as a limit of Riemann sums using points in \([1, 2]\) that form a geometric progression (left or right end points of the intervals could be used).

15. (see also problem 5.1.15) The function

\[
f(x) = \begin{cases}
 1/q, & \text{if } x = p/q, \ \text{an irreducible fraction} \\
 0, & \text{otherwise}
\end{cases}
\]

is called the Riemann function on \(\mathbb{R} \). Show that \(f \) is integrable on any interval \([a, b]\) and that \(\int_a^b f(x) \, dx = 0 \).