Practice Problems for Homework 3

- 1. Prove by induction that if $m, n \in \mathbb{N}$ then $mn \in \mathbb{N}$.
- 2. Give a proof of the Modified Induction Principle: If S is a subset of N that has a smallest number s and such that $x + 1 \in S$ whenever $x \in S$ then $S \supseteq \{x \in \mathbb{N} : x > s\}$.
- 3. Prove by induction that if $n, m \in \mathbb{N}$ and n > m then $n \ge m + 1$.
- 4. (a) Prove that between any two real numbers there is a rational number.
 - (b) Prove that between any two real numbers there is an irrational number. You may use the fact that $\sqrt{2}$ is irrational.
 - (c) Prove that any interval contains infinitely many rational numbers and infinitely many irrational numbers.