Homework Assignment 1

Quiz on Wed. Feb 2, 2011, in class.

- Let A = {x ∈ N : 2 < x ≤ 6}, B = {x ∈ N : 1 < x < 4}, C = {x ∈ N : x² − 4 = 0}. Find all elements of the following sets:
 (a) B ∪ C, (b) A ∩ B ∩ C, (c) A ∪ B ∪ C, (d) (A ∩ B) ∪ (B ∩ C), (e) B × C, (f) C × B.
- 2. Sets A and B consist of the elements a = 4n + 2, b = 3n, $n \in \mathbb{N}$. Find $A \cap B$.
- 3. Find the subsets A and B of the set X if it is known that for every $U \subseteq X$ we have $U \cap A = U \cup B$.
- 4. Let f(x) = x and $g(x) = \frac{1}{x}$. Is $f = g \circ g$?
- 5. Find the domain and range for the functions f(x) given by (a) $f(x) = \frac{|x|}{x}$, (b) $f(x) = \frac{2}{x^2+1}$, (c) $f(x) = \frac{1}{\sqrt{x-3}}$.
- 6. Find the domain of $f \circ g$ and $g \circ f$ if $f(x) = \sqrt{x+1}$ and g(x) = 1/(x-6).
- 7. Let $f: D \to \mathbb{R}$ be defined by $f(x) = (x+1)^2/x$ for $x \in D$ $(D \subseteq \mathbb{R}$ is the largest possible domain of the function). Find $D, f(D), f^{-1}([1,3])$ and $f^{-1}((0,\infty))$.
- 8. Prove that for non-empty sets A and B, $A \times B = B \times A$ if and only if A = B.
- 9. Prove "De Morgan's laws": for any sets A, B and C
 - (a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
 - (b) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$
- 10. Translate the following logical statements from the formal logic notation into plain English. For each of the statements write its negation.
 - (a) $\forall x ((x \in A) \Rightarrow (x \in B))$
 - (b) $\forall x \ ((x \in A) \Leftrightarrow (x \in B))$
 - (c) $\forall x \ ((x \in \mathbb{R}) \land (x > a) \Rightarrow (f(x) > 0))$
 - (d) $\forall \varepsilon > 0 \exists \delta > 0 \quad \forall x \in \mathbb{R} ((0 < |x a| < \delta) \Rightarrow |f(x) A| < \varepsilon)).$
- 11. Show that for any sets A, B and C
 - (a) $A \cup B = A$ if and only if $B \subseteq A$
 - (b) $A \setminus B = A$ if and only if $A \cap B = \emptyset$.
- 12. Let $f: X \to Y$ with $A_1, A_2 \subseteq X$ and $B_1, B_2 \subseteq Y$. Show that

- (a) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
- (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
- (c) Give an example when $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$
- (d) Show that if f is a one-to-one function then $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$.