Taylor's formula

The idea of differential calculus is that "regular" (differentiable) functions $f(x)$ are well approximated by their tangent lines for x close to a reference point. The derivative $f'(x_0)$ gives the value of the slope of the graph at x_0.

![Graph showing the approximation of $f(x)$ by $y_0 + f'(x_0)(x-x_0)$]

The quantitative version of this statement is precisely the "Fundamental Lemma of Differentiation" that we used for the proof of Chain Rule.

Lemma: If f is differentiable at x_0 then

$$f(x) = f(x_0) + f'(x_0)(x-x_0) + (x-x_0)\gamma(x-x_0)$$

where $\gamma(h) \to 0$ as $h \to 0$.

A natural idea is to try to refine this kind of approximation by using higher degree polynomials, say

$$f(x) = f(x_0) + f'(x_0)(x-x_0) + A_2(x-x_0)^2 + o((x-x_0)^2)$$
Here’s a formal way to obtain coefficients of such a higher degree polynomial:

\[f(x) = A_0 + A_1(x-x_0) + A_2(x-x_0)^2 + \cdots + A_n(x-x_0)^n + o((x-x_0)^n) \]

plug in \(x_0 \Rightarrow f(x_0) = A_0 \)

\[f'(x) = A_1 + 2A_2(x-x_0) + \cdots + nA_n(x-x_0)^{n-1} + o((x-x_0)^{n-1}) \]

plug in \(x_0 \Rightarrow f'(x_0) = A_1 \)

\[f''(x) = 2A_2 + 3\cdot 2A_3(x-x_0) + \cdots + n(n-1)A_n(x-x_0)^{n-2} + o((x-x_0)^{n-2}) \]

plug in \(x_0 \Rightarrow f''(x_0) = 2A_2 \)

\[f^{(k)}(x_0) = k!A_k, \quad \text{or} \]

\[A_k = \frac{f^{(k)}(x_0)}{k!} \]

Then the natural choice of the polynomial to use is

\[p_m(x) = f(x_0) + f'(x_0)(x-x_0) + \cdots + \frac{f^{(m)}(x_0)}{m!}(x-x_0)^m \]

Def. The above polynomial is Taylor's polynomial for \(f(x) \) about \(x=x_0 \).

We hope (so far, it's formal calculation) that

\[f(x) = p_m(x) + o((x-x_0)^{m+1}) \]

means \((x-x_0)^m f(x-x_0) \) as \(h\to 0 \).
(The above eqn. is known as Taylor's formula)

Definition

\[r_n(x_0, x) = f(x) - p_n(x_0, x) \]

is the Taylor remainder of order n.

Theorem (Lagrange's form for Taylor remainder)

Let \(n \in \mathbb{N} \) and let \(f^{(n+1)} \) be continuous, differentiable on \((a, b) \ni x_0 \). Then for \(\forall x \in (a, b) \),

\[r_n(x_0, x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1} \]

for a certain \(c \) between \(x \) and \(x_0 \).

Example

\[f(x) = e^x; \quad f^{(j)}(x) = e^x, \quad j \in \mathbb{N} \]

\(x_0 = 0 \); then \(f^{(j)}(0) = 1 \)

\[p_n(x_0, x) = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} \]

\[f(x) = e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + r_n(x_0, x) \]

where \(r_n(x_0, x) = \frac{e^c}{(n+1)!} (x-x_0)^{n+1} \)

(\(c \) depends on \(x \); \(c \) between \(x_0 = 0 \) and \(x \))

If we fix \(x \) and increase \(n \), then

\[\frac{e^c x^{n+1}}{(n+1)!} \leq \frac{e^x x^n}{(n+1)!} \]
Notice that \(\forall x > 0, \frac{x^n}{n!} \to 0, \, n \to \infty \)

(Indeed, let \(a \) be the smallest natural number \(\geq x \), then \(\forall n > a, \)

\[
\frac{x^n}{n!} \leq \frac{a^n}{n!} = \frac{a \ldots \cdot a}{1 \cdot 2 \ldots \cdot a} \cdot \frac{a \ldots \cdot a}{(a+1) \ldots \cdot n} \\
\leq a \cdot q^{n-a}, \\
q = \frac{a}{a+1} \leq 1. \Rightarrow \frac{a^a}{q^a} \cdot q^n \to 0 \quad \text{as} \quad n \to \infty.
\]

Thus, for every \(x \) fixed \(r_n(x_0, x) \to 0 \)

as \(n \to \infty \).

The approximation is visibly good for \(x \) close to \(x_0 \); moreover the remainder converges to zero for every \(x \) fixed. If we keep \(n \) fixed however, the approximation deteriorates as \(x \) becomes large.

Proof of Taylor's theorem.

\(n=0 \) is Lagrange's mean value theorem:

\[f'(c) = f(x_0) + f'(c)(x-x_0) \]

For \(n \geq 1 \) WTS

\[f^{(n+1)}(c) = M(n+1)! \text{ where} \]

\[M = \frac{f(x) - p_n(x_0, x)}{(x-x_0)^{n+1}} \]
Define \(g: (a,b) \to \mathbb{R} \) by
\[
g(t) = f(t) - p \alpha (x_0, t) - M (t - x_0)^{n+1}
\]
Then \(g^{(n+1)} (t) = f^{(n+1)} (t) - M (n+1)! \)
\(g(x_0) = 0, \quad g(x) = 0 \implies \)
\(g'(c_1) = 0; \)
\(g'(x_0) = \ldots = g^{(k)} (x_0) = 0. \)
\(\implies g'' (c_2) = 0 \implies \ldots g^{(n+1)} (c_{n+1}) = 0. \) \(\Box \)
Integration by parts and Taylor's formula

Then (Int. by parts.) \(u, v : [a, b] \to \mathbb{R} \)

such that \(u', v' : [a, b] \to \mathbb{R} \)
continuously. Then

\[
\int_a^b uv' = [uv]_a^b - \int_a^b u'v
\]

Proof:

\[
uv' + u'v = (uv)'
\]

\[
\int_a^b (uv)' = [uv]_a^b = \int_a^b uv' + \int_a^b u'v \tag{1}
\]

Then

Let \(f \) be such that \(f^{(n+1)} \) is continuous on the interval with end points \(x_0 \) and \(x \); then

\[
f(x) = p_n(x_0, x) + r_n(x_0, x)
\]

where

\[
r_n(x_0, x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t) (x-t)^n dt
\]

Proof:

\[
f(x) - f(x_0) = \int_{x_0}^x f'(t) dt = - \int_{x_0}^x f'(t)(x-t) dt
\]

\[
= \int_{x_0}^x f''(t)(x-t) dt - \left[f'(t)(x-t) \right]_{x_0}^x
\]

\[
=> f(x) = f(x_0) + f'(x_0)(x-x_0) +
+ \int_{x_0}^x f''(t)(x-t) dt.
\]
continuing,

\[f(x) - f(x_0) = f'(x_0)(x-x_0) - \int_{x_0}^{x} f''(t) \frac{1}{2} (x-t)^2 \, dt \]

\[= f'(x_0)(x-x_0) - \left[f''(t) \frac{1}{2} (x-t)^2 \right]_{x_0}^{x} + \int_{x_0}^{x} f'''(t) \frac{1}{2} (x-t)^2 \, dt \]

\[= f'(x_0)(x-x_0) + \frac{1}{2} f''(x_0)(x-x_0)^2 \]

\[+ \frac{1}{2} \int_{x_0}^{x} f'''(t) (x-t)^2 \, dt \]

Induction step:

\[\frac{1}{(n-1)!} \int_{x_0}^{x} f^{(n)}(t) (x-t)^{n-1} \, dt \]

\[= -\frac{1}{n!} \int_{x_0}^{x} f^{(n)}(t) (x-t)^{n} \, dt \]

\[= -\frac{1}{n!} \left[f^{(n)}(t) (x-t)^{n} \right]_{x_0}^{x} + \frac{1}{n} \int_{x_0}^{x} f^{(n+1)}(t) (x-t)^{n} \, dt \]

\[= \frac{1}{n!} f^{(n)}(x_0)(x-x_0)^{n} + \frac{1}{n} \int_{x_0}^{x} f^{(n+1)}(t) (x-t)^{n} \, dt . \]

Corollary: Lagrange's form of the remainder

\[r_n (x_0, x) = \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t) (x-t)^{n} \, dt \]

\[= \frac{1}{n!} f^{(n+1)}(c) \int_{x_0}^{x} (x-t)^{n} \, dt \]

\[= \frac{1}{n!} f^{(n+1)}(c) \left[\frac{-1}{n+1} (x-t)^{n+1} \right]_{x_0}^{x} \]

\[= \frac{1}{(n+1)!} f^{(n+1)}(c) (x-x_0)^{n+1} . \] [Use Problem 16 in 5.1.]}
Uniqueness of the Taylor Expansion

Suppose that we found

\[f(x) = P_n(x_0, x) + o((x-x_0)^n) \]

where

\[P_n(x_0, x) = A_0 + A_1(x-x_0) + \ldots + A_n(x-x_0)^n \]

Is it true that \(P_n(x_0, x) = P_n(x_0, x) \)

(the Taylor polynomial)?

\[\lim_{x 	o x_0} \eta(x) = \eta(x_0) \]

Theorem. Suppose \(f^{(n+1)} \) is defined and continuous on an interval \((a, b)\) containing \(x_0 \), and that (LT) holds. Then \(P_n(x_0, x) \) is necessarily the Taylor polynomial of \(f \) at \(x_0 \).

Proof: We know \(f(x) = A_0 + A_1(x-x_0) + \ldots + A_n(x-x_0)^n + o((x-x_0)^n) \)

\[\lim_{x \to x_0} f(x) = A_0 \]
\[
\frac{f'(x)}{x-x_0} = A_1 + A_2 (x-x_0) + \cdots + A_n (x-x_0)^{n-1} + o((x-x_0)^{n-1})
\]

\[
\Rightarrow A_1 = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x-x_0} = f'(x_0)
\]

\[
f(x) - f(x_0) - f'(x_0)(x-x_0) = A_2 + A_3 (x-x_0) + \cdots + A_n (x-x_0)^{n-2} + o((x-x_0)^{n-2})
\]

\[
\Rightarrow A_2 = \lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x-x_0)}{(x-x_0)^2}
\]

(Know this limit exists!)

By induction,

\[
A_k = \lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x-x_0) \cdots - A_{k-1}(x-x_0)^{k-1}}{(x-x_0)^k}
\]

Thus \(A_0, \ldots, A_n \) are uniquely determined.

Examples

1) \(f(x) = \sin x; \quad x_0 = 0\)

\[
f'(x) = \cos x = \sin (x + \frac{\pi}{2})
\]

\[
f''(x) = -\sin x = \cos (x + \frac{\pi}{2}) = \sin (x + \pi)
\]

\[
f'''(x) = \sin x = \sin (x + \frac{3\pi}{2})
\]

\[
f''''(x) = \cos x = \sin (x + \pi + \frac{\pi}{2}) = \sin (x + 2\pi)
\]

\[
f(x) = \sin (x + \frac{\pi k}{2})
\]

\[
f'(0) = \sin (\frac{\pi k}{2}) = 0 \text{ for } k \neq 0, \pm 1, \ldots
\]
\[p_1(0,x) = x \]
\[p_3(0,x) = x - \frac{x^3}{6} \]
\[p_5(0,x) = x - \frac{x^3}{6} + \frac{x^5}{120} \]
\[p_{2n+1}(0,x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \]

Then \[s_{2n} x = x - \frac{x^3}{6} + \frac{x^5}{120} - \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) \]

Exercise: Derive the formula

\[\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) \]

Exercise: Derive Lagrange's form of the remainder, and show that

for \[s_{2n} x, \quad \left| r_n(0,x) \right| \leq \frac{1}{(n+1)!} /x/^{n+1} \]

(this can be improved to next order for \(n \text{ odd} \))

and for \[\cos x, \quad \left| r_n(0,x) \right| \leq \frac{1}{(n+1)!} /x/^{n+1} \]

(can be improved to next order if \(n \text{ is even} \))
2) \(f(x) = \ln(1 + x) \), \(x_0 = 0 \)

\[
\begin{align*}
\varphi'(x) &= \frac{1}{1+x} \quad & f^{(2)}(x) &= \frac{2}{(1+x)^3} \\
\varphi''(x) &= -\frac{1}{(1+x)^2} \quad & f^{(4)}(x) &= -\frac{2 \cdot 3}{(1+x)^4} \\
\varphi^{(k)}(x) &= (\frac{-1}{1+x})^{k-1}(k-1)! \\
f^{(k)}(0) &= (\frac{-1}{1})^{k-1}(k-1)! \\
\end{align*}
\]

\[
\begin{align*}
p_n(0, x) &= x^2 - \frac{x^3}{3} + \frac{x^4}{4} - \cdots + \frac{(-1)^{n-1}x^n}{n} \\
\ln(1 + x) &= x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + \frac{(-1)^{n-1}x^n}{n} + o(x^n). \\
\end{align*}
\]

For \(x > 0 \), Lagrange's form of the remainder gives

\[
|p_n(0, x)| = \frac{|(-1)^{n+1}|}{|1+x|^{n+1}} \leq \frac{|x|^{n+1}}{n+1}
\]

For \(x < 0 \), it is somewhat more difficult to show that

Exercise \(\rightarrow \) \(|p_n(0, x)| \leq |x|^{n+1} \) \(x \in (-1, 0) \).

3) \(f(x) = (1 + x)^d \); \(d \in \mathbb{R} \); \(x_0 = 0 \).

\[
\begin{align*}
\varphi^{(k)}(x) &= \frac{d(d-1) \cdots (d-k+1)(x)^{d-k}}{k!} \\
f^{(k)}(0) &= \frac{d(d-1) \cdots (d-k+1)}{k!}
\end{align*}
\]
Then
\[(1+x)^d = 1 + dx + \frac{d(d-1)}{2} x^2 + \ldots + \frac{d(d-1)\ldots (d-n+1)}{n!} x^n + o(x^n).\]

Problems

1) Show that for \(\ln(1+x) \)
\[v_n(0, x) \leq |x|^{n+1}, \quad |x| < 1\]

2) Find Taylor polynomials of order \(n \) for \((1-x^2)^{-\frac{1}{2}} \times \ln(1+x) \)
\[
\frac{1}{1-x} \quad (x+1) \ln(1+x)
\]
Find the first 5 terms for \(\arctan(x) \)

3) Compute the values to 5 decimals of accuracy.
Use Lagrange's form of the remainder to guarantee the result:
\[e^{0.2} ; \log(0.9) ; (63)^{\frac{1}{2}} \]

4) Compute the integral to 5 decimals
\[
\int_0^1 \frac{1-\cos x}{x} \, dx.
\]