Mon, Jun 22, 2015 MATH 350 Quiz 5
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Each problem is worth 2 points. Show all your work.

Name: (print)

1. Determine if the given sequence converges to a limit. (Justify your answer.) In case the
limit does not exist give an example of at least one convergent subsequence:
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2. Give an example of a sequence which has subsequences converging to 4 distinct real
numbers. Justify your answer.
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3. Suppose that f is continuous on [0, co) and that f is bounded. Give an example to show
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4. Show that the linear function f(z) = az + b is uniformly continuous on R.
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