"Web Problems" for Homework 8

- 1. Give a direct proof that $(0.4)^x$ is unbounded above, without referring to the facts about the logarithmic function.
- 2. Prove that $10^{-|x|}$ is bounded. Find the supremum and infimum on \mathbb{R} (with proofs).
- 3. (a) Show that $f(x) = 2^{1/x}$ is decreasing on any interval which does not contain zero.
 - (b) Show that $\inf_{(-\infty,0)} f = 0$, $\sup_{(-\infty,0)} f = 1$, $\inf_{(0,\infty)} f = 1$, $\sup_{(0,\infty)} f = +\infty$.
 - (c) Prove that the range of f is $(0, \infty) \setminus \{1\}$.
 - (d) Find the inverse function f^{-1} .
 - (e) Find the range of f^{-1} .
 - (f) Find the derivative $(f^{-1})'$.
- 4. (a) Prove that if $\max_X f$ exists then

$$\sup_X f = \max_X f.$$

(b) Prove that if $\min_{X} f$ exists then

$$\inf_X f = \min_X f.$$

5. Prove that

$$\sup_{X} (f+g) \le \sup_{X} f + \sup_{X} g,$$

and

$$\inf_{X}(f+g) \ge \inf_{X} f + \inf_{X} g.$$

6. Prove that

$$\sup_{X}(-f) = -\inf_{X}f,$$

and

$$\inf_X(-f) = -\sup_X f.$$

7. If f does not change sign on f, prove that

$$\sup_{X} \frac{1}{f} = \frac{1}{\inf_{X} f}, \quad \text{and} \quad \inf_{X} \frac{1}{f} = \frac{1}{\sup_{X} f}.$$

- 8. (a) Prove that if f is decreasing on [a, b] and continuous, then f^{-1} exists and is continuous on [f(b), f(a)].
 - (b) Prove that if f is increasing on [a, b] and f^{-1} exists then f^{-1} is increasing on [f(a), f(b)].
 - (c) Prove that if f is decreasing on [a, b] and f^{-1} exists then f^{-1} is decreasing on [f(b), f(a)].
- 9. Find the limits of sequences:

(a)
$$\left(\frac{n+10}{2n-1}\right)^n$$

(b) $\left(1+\frac{4}{n}\right)^n$
(c) $\left(\frac{n+1}{n-1}\right)^n$
(d) $\frac{2n(-1)^n+3}{4-\sqrt{n^2+5}(-1)^n}$
(e) $n\sin\frac{\pi}{n}$
(f) $n\cos\frac{\pi}{n}$.

- 10. Find the derivatives of f(x) at $x = x_0$ based on the definition:
 - (a) $f(x) = \sqrt{x}, x_0 > 0$ (b) $f(x) = \sqrt{x+2}, x_0 = 1$ (c) $f(x) = 1/(1+x), x_0 = 3$ (d) $f(x) = x^{1/3}, x_0 \neq 0$ (e) $f(x) = \sin x, x_0 \in \mathbb{R}$ (f) $f(x) = \cos x, x_0 \in \mathbb{R}$.