"Web Problems" for Homework 5

- 1. (After Problems 4, 6 in Section 2.5)
 - (a) If -1 < a < 1 prove that $\lim n a^n = 0$.
 - (b) If a > 1 prove that $\lim_{n} \frac{a^{n}}{n} = \infty$.
 - (c) If a > 1 and $m \in \mathbb{N}$ prove that $\lim_{n \to \infty} \frac{a^n}{n^m} = \infty$.
- 2. (After Problems 11-15 in Section 2.5) Use the ε -N technique or theorems about limits to find the limits of sequences, or show they do not exist:

(g) $\frac{5^n}{n^n}$

- (a) $n(-1)^n$ (f) $\frac{(-1)^n + \frac{1}{n}}{\frac{1}{n^2} (-1)^n}$
- (b) $\sin \frac{\pi n}{180}$

(c)
$$\sqrt{\frac{2}{n-1}}$$
 (h) $\left(\frac{2n+3}{n^2}\right)$

- (i) $\sqrt{n^2 + n} n$ (i) $\frac{\log n}{n}$ (i) $\frac{\log n}{n}$ (j) $\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n + 1}}$.
- 3. (a) Let a > 1. Prove that $\lim_{n} \sqrt[n]{a} = 1$.
 - (b) Prove that $\lim_{n} \sqrt[n]{n} = 1$.
 - (c) Let 0 < a < 1. Prove that $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

Hint for (a): Let $\sqrt[n]{a} - 1 = b_n$. Then $b_n > 0$ and $a = (1 + b_n)^n \ge nb_n$ by Bernoulli's inequality.

- 4. Let $f:[a,b] \to \mathbb{R}$ be strictly increasing and continuous, and let c = f(a), d = f(b).
 - (a) Show that f is one-to-one.
 - (b) Use the intermediate value property to argue that f([a, b]) = [c, d].
 - (c) Show that the inverse function $f^{-1}: [c,d] \to [a,b]$ is continuous on [c,d].
- 5. Given $n \in \mathbb{N}$, let $f : \mathbb{R} \to \mathbb{R}$ be the power function $f(x) = x^n$.
 - (a) Show that f is strictly increasing on $[0, \infty)$.
 - (b) Show that f is an even function for n even, and an odd function for n odd.
 - (c) Show that f is unbounded above (i. e. the range $f(\mathbb{R})$ is an unbounded above set).
 - (d) If n is odd, show that f is unbounded below.

- (e) Use the above and the result of the previous problem to show that the equation $y^n = x$ has a unique solution y (denoted $y = \sqrt[n]{x}$) for every $x \in \mathbb{R}$ when n is odd, and for every $x \ge 0$ when n is even.
- (f) Conclude that the function $\sqrt[n]{x}$ is continuous on \mathbb{R} for n odd, and continuous on $[0,\infty)$ for n even.
- 6.* Let $x \ge 0$ be real and let $p = \frac{m}{n} > 0$ be rational. Define $x^p := \left(\sqrt[n]{x}\right)^m$.
 - (a) Show that x^p is well-defined and does not depend on the representation of p as a fraction (i. e. $\left(\sqrt[nk]{x}\right)^{mk} = \left(\sqrt[n]{x}\right)^m$ for any $k \in \mathbb{N}$).
 - (b) Show that $\left(\sqrt[n]{x}\right)^m = \sqrt[n]{x^m}$.
 - (c) Show that $x^p x^q = x^{p+q}$ and $(x^p)^q = x^{pq}$.
 - (d) Use the results of the previous problem and theorems on continuous functions to argue that $f(x) = x^p$ is continuous on $[0, \infty)$.

Remark: The equality in 6 (b) is no longer true if x < 0: for instance, $((-1)^2)^{\frac{1}{6}} = 1$ while $((-1)^{\frac{1}{6}})^2$ is undefined. Moreover $((-1)^1)^{\frac{1}{3}} = -1$, so trying to define $x^{\frac{m}{n}} = \sqrt[n]{x^m}$ and using this for x < 0 leads to problems.

- 7.* (Negative exponents)
 - (a) Let $x \in \mathbb{R}$, $x \neq 0$. Show that $\forall m \in \mathbb{N} \ (x^{-1})^m = (x^m)^{-1}$.
 - (b) Let $x \neq 0$ be such that $\sqrt[n]{x}$ is defined. Show that $\forall n \in \mathbb{N}$ $\sqrt[n]{x^{-1}} = (\sqrt[n]{x})^{-1}$.
 - (c) Let x > 0 real, p > 0 rational. Show that $(x^{-1})^p = (x^p)^{-1}$.

Remark: Results of the last problem allow us to define x^{-m} , $x^{-\frac{1}{n}}$ and x^{-p} as either of the equal expressions. Using the agreement $x^0 = 1$, $x \neq 0$ one can obtain the laws of exponents in 6 (c) for all x > 0 and all $p, q \in \mathbb{Q}$.

- 8.* (a) Prove that if p > 0 is rational then $\lim_{x \to +\infty} x^p = +\infty$, $\lim_{x \to 0+} x^p = 0$.
 - (b) Prove that if p < 0 is rational then $\lim_{x \to +\infty} x^p = 0$, $\lim_{x \to 0+} x^p = +\infty$.
 - (c) Prove that if P(x) is a polynomial of odd degree then $\lim_{x \to +\infty} P(x) = \pm \infty$.
 - (d) Prove that if P(x) is a polynomial of even degree then $\lim_{x \to \pm \infty} P(x) = +\infty$.

Note: Problems marked with * are for the Practice section.