Homework Assignment 1

Quiz on Mon. Jun 1, 2015, in class.

Note: For problems with proofs try to follow formal logical notation and show all steps.

- 1. Use truth tables to show that for any logical statements P, Q, R one has
 - (a) $\overline{\overline{P}} = P$ (b) $\overline{(P \lor Q)} \Leftrightarrow \overline{P} \land \overline{Q}$ (c) $\overline{(P \land Q)} \Leftrightarrow \overline{P} \lor \overline{Q}$ (d) $(P \Rightarrow Q) \Leftrightarrow \overline{P} \lor Q$ (e) $(P \Rightarrow Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P})$ (f) $(P \lor Q) \land R \Leftrightarrow (P \land R) \lor (Q \land R).$
- 2. Which of the logical statements P, Q, R have to be true or false if we know that the statement

$$\left((\overline{P} \lor P) \land Q\right) \Rightarrow R$$

is true?

- 3. Translate the following logical statements from the formal logic language into more conventional mathematical notation. For each of the statements write its negation.
 - (a) $\forall x ((x \in A) \Rightarrow (x \in B))$
 - (b) $\forall x \ ((x \in A) \Leftrightarrow (x \in B))$
 - (c) $\forall x \forall y ((x \in \mathbb{R}) \land (y \in \mathbb{R}) \land (x > y) \Rightarrow (f(x) > f(y)))$
 - (d) $\forall \varepsilon > 0 \exists \delta > 0 \quad \forall x \in \mathbb{R} ((0 < |x a| < \delta) \Rightarrow |f(x) A| < \varepsilon)).$
- 4. Translate the following statements into the formal logic notation. Using the rules of constructing negations of universal and existential statements, find their logical negations:
 - (a) On some commuter train going from Montalvo to the Union Station there is a vacant seat in every car.
 - (b) Every town in Sweden has a street on which at least one of the houses has all windows facing south.
- 5. Disprove the satements by finding a counterexample:
 - (a) For every natural n the number $n^2 + n + 41$ is a prime.

- (b) Every function continuous at a point has a derivative at that point.
- 6. Prove "De Morgan's laws": for any sets A, B and C
 - (a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
 - (b) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$
- 7. Prove that for any sets A, B and C
 - (a) $A \cup B = A$ if and only if $B \subseteq A$
 - (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (c) $A \setminus B = A$ if and only if $A \cap B = \emptyset$.
- 8. Prove that for non-empty sets A and B, $A \times B = B \times A$ if and only if A = B.
- 9. Find the subsets A and B of a set X if it is known that for every $U \subseteq X$ we have $U \cap A = U \cup B$.
- 10. Find the domain of $f \circ g$ and $g \circ f$ if $f(x) = \sqrt{x+1}$ and g(x) = 1/(x-6).
- 11. Let f(x) = x and $g(x) = \frac{1}{x}$. Is $f = g \circ g$?
- 12. Let $f: D \to \mathbb{R}$ be defined by $f(x) = (x+1)^2/x$ for $x \in D$ $(D \subseteq \mathbb{R}$ is the largest possible domain of the function). Find $D, f(D), f^{-1}([1,3])$ and $f^{-1}((0,\infty))$.
- 13. Let $f: X \to Y$ with $A_1, A_2 \subseteq X$ and $B_1, B_2 \subseteq Y$. Prove that
 - (a) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
 - (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
 - (c) Give an example when $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$.
 - (d) Prove that if f is a one-to-one function then $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$.
- 14. Suppose $f: X \to Y$ and $A \subseteq X, B \subseteq Y$. Prove that
 - (a) $f(f^{-1}(B)) \subseteq B$. Give an example where $f(f^{-1}(B)) \neq B$
 - (b) $A \subseteq f^{-1}(f(A))$. Give an example where $A \neq f^{-1}(f(A))$
 - (c) f is a one-to-one function if and only if $f^{-1}(f(A)) = A$ for every $A \subseteq X$.