MATH 340: Midterm 2 Review Questions

- 1. Give an example of two distinct discrete random variables with the same probability mass function.
- 2. A random variable X has probability density

$$f(x) = \frac{a}{x^2 + 1}, \quad -\infty < x < \infty.$$

Find

- (a) The constant a.
- (b) The cumulative distribution function of X.
- (c) The probability P(|X| < 1).

Answers: (a) $1/\pi$; (b) $\frac{1}{2} + \frac{1}{\pi} \arctan x$; (c) 1/2.

3. A random variable X has cumulative distribution function

$$\Phi(a) = a + b \arctan \frac{x}{2}, \quad -\infty < x < \infty.$$

- (a) Find the constants a and b. (b) Find the probability density function of X.
- 4. Balls are drawn from an urn containing w white balls and b black balls unitil a white ball appears. Find the expected value μ and the variance σ^2 of the number of black balls drawn, assuming that each ball is replaced after being drawn.

Answer: $\mu = b/w$, $\sigma^2 = b(w + b)/w^2$.

- 5. A textbook of 500 pages contains 500 misprints. Estimate the probability that a given page contains exactly 3 misprints.
- 6. Suppose that P(X = 0) = 1 P(X = 1). If $\mathbb{E}[X] = 5\text{Var}(X)$, find P(X = 1).
- 7. A point X is picked at random (with uniform density) in the interval (0,1). Find the probability that X > 1/2, given that
 - (a) X > 1/4
 - (b) |X 1/2| < 1/4.
- 8. Suppose that the cumulative distribution function of X is given by

$$F(a) = \begin{cases} 0, & a < 0 \\ 1/8, & 0 \le a < 1 \\ 1/4, & 1 \le a < 2 \\ 7/8, & 2 \le a < 4 \\ 1, & a \ge 4. \end{cases}$$

1

- (a) Find P(X = i) for i = 0, 1, 2, 3, 4.
- (b) Find $\mathbb{E}[X]$.

9. The cumulative distribution function of Z is given by

$$F_Z(z) = \begin{cases} 0, & z < a \\ (z - a)/(b - a), & a \le z \le b \\ 1, & z > b, \end{cases}$$

where a and b are given numbers.

- (a) Find the probability density of X.
- (b) Find $\mathbb{E}[X]$.
- (c) Find Var(X).

10. Find the mean and the variance of the random variable X with probability density

$$f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < \infty.$$

Answer: $\mathbb{E}[X] = 0$, Var(X) = 2.

11. Let X be an exponential random variable. Show that P(X > s + t | X > t) = P(X > s) for s > 0, t > 0 (the "memoryless property").

12. Suppose that the time (in hours) required to repair a car is an exponentially distributed random variable with parameter $\lambda = 1/2$. What is the probability that the repair time exceeds 4 hours? If it exceeds 4 hours what is the probability that it exceeds 8 hours?

13. Let X be random variable normally distributed with parameters $\mu=70,\ \sigma=10.$ Estimate

- (a) P(X > 50)
- (b) $P(X \le 60)$
- (c) P(|X 60| > 20).

14. An electronic component has lifetime X which is distributed according to the probability density

$$f(x) = cx^2 e^{-x}, \quad x > 0,$$

where c is a constant.

- (a) Determine the value of the constant c.
- (b) Compute the expected lifetime of the device.

15. (5.18) Suppose that X is a normal random variable with mean 5. If P(X > 9) = 0.2, approximately what is Var(X)?

16. **(5.20)** If 65 percent of the population of a large community is in favor of a proposed rise in school taxes, approximate the probability that a random sample of 100 people will contain

- (a) at least 50 who are in favor of the proposition;
- (b) between 60 and 70 inclusive who are in favor;
- (c) fewer than 75 in favor.
- 17. Suppose you toss a dart at a circular target of radius 10 inches. Given that the dart lands in the upper half of the target, find the probability that
 - (a) it lands in the right half of the target
 - (b) its distance from the center is less than 5 inches
 - (c) its distance from the center is more than 5 inches
 - (d) it lands within 5 inches of the point (0,5) (the origin is the center of the circle).
- 18. A man and a woman agree to meet at a certain location at about 12:30 pm. The man arrives at a time uniformly distributed between 12:20 and 12:40 and if the woman independently arrives at a time uniformly distributed between 12:15 and 12:45 pm.
 - (a) Find the probability that the first to arrive waits no longer than 5 minutes.
 - (b) What is the probability that the man arrives first? (See related example in Section 6.2.)
- 19. **(6.22)** The joint density of X and Y is

$$f(x,y) = \begin{cases} x + y, & 0 < x < 1, \ 0 < y < 1 \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Are X and Y independent? Justify your answer.
- (b) Find the marginal density of X.
- (c) Find P(X + Y < 1).

Multiple Integration Review Questions

(mostly from J. Stewart, Calculus, 7th ed. Sections 15.3, 15.4)

1. Sketch the region of integration and and change the order of integration:

(a)
$$\int_0^1 \int_0^y f(x,y) \, dx \, dy$$

(b)
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} f(x,y) \, dx \, dy$$

(c)
$$\int_0^\infty \int_x^\infty f(x,y) \, dy \, dx.$$

2. Evaluate the integral by changing the order of integration:

(a)
$$\int_0^1 \int_x^1 \sin(y^2) \, dy \, dx$$

(b)
$$\int_0^1 \int_{3y}^3 e^{x^2} dx dy$$

(c)
$$\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{y^3 + 1} \, dy \, dx$$
.

3. Use geometry or symmetry, or both, to evaluate the double integral:

(a)
$$\iint_D (x+2) dx dy$$
, $D = \{(x,y) : 0 \le y \le \sqrt{9-x^2}\}$

(b)
$$\iint_D ax^3 + by^3 + \sqrt{a^2 - x^2} \, dx \, dy, \quad D = [-a, a] \times [-b, b].$$

4. Evaluate the integrals by converting to polar coordinates:

(a)
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sin(x^2 + y^2) \, dy \, dx$$

(b)
$$\int_0^1 \int_y^{\sqrt{2-y^2}} (x+y) \, dx \, dy.$$

5. Use polar coordinates to evaluate the integral:

$$\iint_D e^{-x^2-y^2} dx dy, \text{ where } D \text{ is the region bounded by}$$

4

the cemicircle $x = \sqrt{4 - y^2}$ and the y-axis.