Name: (print)

Solutions.

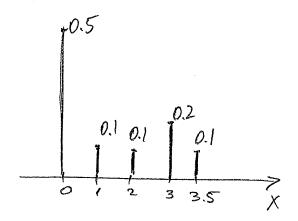
Each problem is worth 2 points. Show all your work.

1. If the cumulative distribution function of X is given by

$$F(a) = \begin{cases} 0, & b < 0 \\ \frac{1}{2}, & 0 \le a < 1 \\ \frac{3}{5}, & 1 \le a < 2 \\ \frac{4}{5}, & 2 \le a < 3 \\ \frac{9}{10}, & 3 \le a < 3.5 \\ 1, & a \ge 3.5 \end{cases}$$

calculate the probability mass function of X. [Graph a bar diagram for the PMF.]

$$X \in \{0, 1, 2, 3, 3.5\}$$


$$P(X=0) = \frac{1}{2} = 0.5$$

$$P(X=1) = \frac{3}{5} - \frac{1}{2} = 0.1$$

$$P(X=2) = \frac{1}{5} - \frac{3}{5} = 0.2$$

$$P(X=3) = \frac{9}{10} - \frac{1}{5} = 0.1$$

$$P(X=3.5) = 1 - \frac{9}{10} = 0.1$$

2. Suppose P(X=0)=1-P(X=1). If $\mathbb{E}[X]=3\mathrm{Var}(X)$, find P(X=0).

$$P(X=0) = p$$
, then $P(X=1) = 1-p$.
 $E(X) = 0 \cdot p + 1 \cdot (1-p) = 1-p$
 $Var(X) = E[X^2] - E[X]^2 = (1-p) - (1-p)^2 = p(1-p)$
 $1-p = 3p(1-p)$
 $P=1$ or $3p=1 = > P=\frac{1}{3}$

Please turn over...

3. It is known that diskettes produced by a certain company will be defective with probability 0.01, independently of one another. The company sells the diskettes in packages of 10 and offers a money-back guarantee that at most 1 of the 10 diskettes in the package will be defective. If someone buys 3 packages, what is the probability that exactly one of the packages will be returned under the money-back guarantee?

X - number of defective obstactives in a package of 70.

X ~ Binomial (n=10, p=0.01)P ("package returned") = $P(X \ge 2)$ = $1 - P(X=0) - P(X=1) = 1 - 0.99^{10} - 10.0.99^{9}$.

= $1 - P(X=0) - P(X=1) = 1 - 0.99^{10} - 10.0.99^{9}$.

A 4.2662-10-3

Y - number of packages returned

Y ~ Binomial $(n=3, p=4.2662.10^{-3})$ $P(Y=1) = {3 \choose 1} p(1-p) = 3p(1-p) \approx 0.012744$