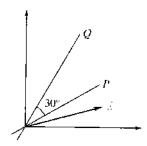
- **a.** For two angles, α and β , consider the products $D_{\alpha}D_{\beta}$ and $D_B D_{\alpha}$. Arguing geometrically, describe the linear transformations $\bar{y} = D_{\alpha}D_{\beta}\bar{x}$ and $\bar{y} = D_{\beta}D_{\alpha}\bar{x}$. Are the two transformations the same?
- **b.** Now compute the products $D_{\alpha}D_{\beta}$ and $D_{\beta}D_{\alpha}$. Do the results make sense in terms of your answer in part (a)? Recall the trigonometric identities

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$
$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta.$$

30. Consider the lines P and Q in \mathbb{R}^2 sketched below. Consider the linear transformation $T(\vec{x}) = \text{ref}_O(\text{ref}_P(\vec{x}))$, that is, we first reflect \vec{x} about P and then we reflect the result about O.



- **a.** For the vector \vec{x} given in the figure, sketch $T(\vec{x})$. What angle do the vectors \vec{x} and $T(\vec{x})$ enclose? What is the relationship between the lengths of \bar{x} and $T(\bar{x})$?
- b. Use your answer in part (a) to describe the transformation T geometrically, as a reflection, rotation, shear, or projection.
- c. Find the matrix of T.
- d. Give a geometrical interpretation of the linear transformation $L(\vec{x}) = \text{ref}_{P}(\text{ref}_{O}(\vec{x}))$, and find the
- 31. Consider two matrices A and B whose product AB is defined. Describe the /th row of the product AB in terms of the rows of A and the matrix B.
- 32. Find all 2×2 matrices X such that AX = XA for all 2×2 matrices A.

For the matrices A in Exercises 33 through 42, compute $A^2 = AA$, $A^3 = AAA$, and A^4 . Describe the pattern that emerges, and use this pattern to find A1,001. Interpret your answers geometrically, in terms of rotations, reflections, shears, and orthogonal projections.

33.
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 34. $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ **35.** $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

34.
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

35.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

36.
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

37.
$$\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

36.
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 37. $\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ **38.** $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

39.
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

39.
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 40. $\frac{1}{2} \begin{bmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$

41.
$$\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 42. $\frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

42.
$$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

In Exercises 43 through 48, find a 2×2 matrix A with the given properties. (Hint: It helps to think of geometrical examples.)

43.
$$A \neq I_2$$
, $A^2 = I_2$ **44.** $A^2 \neq I_2$, $A^4 = I_2$

44.
$$A^2 \neq I_2$$
, $A^4 = I$

45.
$$A^2 \neq I_2$$
, $A^3 = I_2$

46.
$$A^2 = A$$
, all entries of A are nonzero.

47.
$$A^3 = A$$
, all entries of A are nonzero.

48.
$$A^{10} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

In Exercises 49 through 54, consider the matrices

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

$$D = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \quad E = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}, \quad F = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

$$G = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad H = \begin{bmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{bmatrix}, \quad J = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix},$$

Compute the indicated products. Interpret these products geometrically, and draw composition diagrams, as in Example 2.

49.
$$AF$$
 and FA

51.
$$FJ$$
 and JF

54.
$$BE$$
 and EB .

In Exercises 55 through 64, find all matrices X that satisfy the given matrix equation.

$$55. \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} X = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

56.
$$X \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 57. $\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} X = I_2$

57.
$$\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} X = I$$

$$58. \ X \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} = I_2$$

58.
$$X \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} = I_2$$
 59. $X \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} = I_2$

60.
$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} X = I_2$$

60.
$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} X = I_2$$
 61. $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix} X = I_2$

62.
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} X = I_2$$
 63. $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} X = I_3$

63.
$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} X = I_3$$

64.
$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} X = I_3$$

65. Find all upper triangular 2×2 matrices X such that X^2 is the zero matrix.