1. (a) Let u, v be vectors in  $\mathbb{R}^3$ . Show that

$$u \times v = -v \times u$$

(the cross product is skew-symmetric).

- (b) Show that for any  $u \in \mathbb{R}^3$ ,  $u \times u = 0$ .
- 2. Define the mixed product of three vectors  $u, v, w \in \mathbb{R}^3$  as

$$[u, v, w] = u \cdot (v \times w).$$

- (a) Show that if any two of the vectors u, v, w are equal then [u, v, w] = 0. [Hint: Use the previous problem and the fact that  $v \times w$  is perpendicular to both v and w.]
- (b) Show that

$$\begin{split} [u,v,w] &= -[v,u,w] \\ &= -[u,w,v] \\ &= -[w,v,u] \\ &= [v,w,u] \\ &= [w,u,v] \end{split}$$

(the pattern is that an odd permutation of u, v, w makes the product change sign, while an even permutation preserves it).

[Hint: For the first of the identities use part (a)]