Math 262 Problems Textbook: Robert Messer

1. Let
$$A = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 5 \\ 4 & 15 & 6 \end{bmatrix}$$

- a. Compute A^{-1}
- b. Use to A^{-1} solve $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$.
- 2. Let C[-1,1] be the vector space of all real-valued functions that are continuous on the interval [-1,1].
 - a. Let $W = \{ f \in C[-1,1] | f(-x) = -f(x), \text{ for all } x \in [-1,1] \}$. Prove W is a subspace of C[-1,1].
 - b. Let $W = \{ f \in C[-1,1] | f(-1) = 0 \text{ or } f(1) = 0 \}$. Give a counterexample to show that W is not a subspace of C[-1,1].
- 3. Classify each of the following statements as *always true*, *sometimes true*, or *never true*. No justification required.
 - a. If dim(V) = 3, and $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are vectors in V, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is a linearly independent set.
 - b. If dim(V) = 3, and $\mathbf{v}_1, \mathbf{v}_2$ are vectors in V, then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly independent set.
 - c. If dim(V) = 3, and $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are vectors in V, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ spans V.
 - d. If $\dim(V) = 3$, and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set of vectors in V, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ spans V.
 - e. If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for V, then $\{3\mathbf{v}_1, \frac{1}{2}\mathbf{v}_2, -2\mathbf{v}_3\}$ is also a basis for V.
 - f. If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for V, then $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 \mathbf{v}_3\}$ is a basis for V.
- 4. Let L be a linear transformation from a vector space V into a vector space W where $\ker(L) = \{0\}$. If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent vectors in V, prove that $L(\mathbf{v}_1), L(\mathbf{v}_2), L(\mathbf{v}_3)$ are linearly independent vectors in W. (Indicate in your proof where you use the fact that $\ker(L) = \{0\}$.)

- 5. Let P_2 be the vector space of polynomials of degree less than *or equal to* 2. If $L: P_2 \to P_2$ is given by L(p(x)) = p(0)x + p(1),
 - a. Prove that *L* is a linear transformation.
 - b. Find a basis for the kernel of *L*.
 - c. Find a basis for the range of L.
 - d. Is L onto? Explain.
- 6. Let $A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$
 - a. Find the eigenvalues of A.
 - b. Find bases for the eigenspaces of A.
 - c. Express A in the form $A = XDX^{-1}$ where D is a diagonal matrix.
 - d. *Use part c.* to compute A^6 .
- 7. Let $L: P_1 \to P_3$ be the linear transformation given by $T(p(x)) = (x^2 + 1)p(x)$.
 - a. Find the matrix representation of *L* relative to the ordered bases *B*, *B'* where $B = \{1, 2x + 4\}$ and $B' = \{4, 3x, 2x^2, x^3\}$.
 - b. Let q(x) = 2x + 10. Find $[q(x)]_B$, the coordinate vector of q(x) relative to B.
 - c. Use your answer from part a. to find $[L(q(x))]_{R}$.
 - d. Use your answer from part c. to find L(q(x)).
- 8. (12 pts.) Let $B = \begin{pmatrix} 4 \\ 6 \\ 7 \end{pmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $B' = \begin{pmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ be ordered bases for R^3 .
 - a. Find the transition matrix P such that $P[\mathbf{v}]_B = [\mathbf{v}]_{B'}$ for every $\mathbf{v} \in \mathbb{R}^3$.
 - b. If $\mathbf{v} = 2 \begin{bmatrix} 4 \\ 6 \\ 7 \end{bmatrix} 3 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, find $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{B'}$