

Sec 6.8 The Complex Number System

Learning Objectives:
1. Evaluating the square root of negative real numbers.
2. Adding or subtracting complex numbers.
3. Multiplying complex numbers.
4. Complex Conjugates
5. Dividing complex numbers.
6. Evaluating the powers of i.

1. **Evaluating the Square Root of Negative Real Numbers**

Definitions:

1. **Nonnegativity Property of Real Numbers:** For any real number a,

2. **Imaginary Unit**, i is the number whose square is -1. That is

3. **Complex Numbers**—are numbers of the form $a + bi$, where a and b are real numbers. The real number a is called **real part** and the real number b is called the **imaginary part** of $a + bi$.

4. **Evaluate the square root of Negative Real Numbers:** If N is a positive real number, we defined the principal square root of $-N$, denoted by $\sqrt{-N}$, as

 where $i = \sqrt{-1}$

Example 1. Write each expression as a pure imaginary number.

1. $\sqrt{-25}$
2. $\sqrt{-48}$

Example 2. Write each expression as a complex number in standard form.

1. $3 - \sqrt{-16}$
2. $5 + \sqrt{-12}$
3. $\frac{15 - \sqrt{-75}}{5}$

2. **Adding or Subtracting Complex Numbers**

Properties:

1. **Sum of Complex Numbers:**

2. **Difference of Complex Numbers:**
Example 3. Performed the indicated operation: \((-6 + 4i) - (2 - i)\)

3. Multiplying Complex Numbers

Example 4. Multiply the following.

1. \(2i(5 - 3i)\)

2. \((5 - 2i)(-1 + 3i)\)

3. \(\sqrt{-49} \cdot \sqrt{-4}\)

4. \((3 + \sqrt{-25})(1 - \sqrt{-9})\)

4. Complex Conjugates

Definition.

Complex Conjugate: 1. If \(a + bi\) is a complex number, then its conjugate is defined by \(a - bi\).

2. If \(a - bi\) is a complex number, then its conjugate is defined by \(a + bi\).

Product of Complex Number and Its Conjugate:

\((a + bi)(a - bi) =\)
Example 5. a) Find the conjugate of the complex number, and
b) Multiply the complex number by its conjugate.

1. \(5 + 2i\)

2. \(-1 - 4i\)

5. Dividing complex numbers

Steps for dividing complex numbers:

1. Write the numerator and denominator in standard form, \(a + bi\).
2. Multiply the numerator and denominator by the complex conjugate of the denominator.
3. Simplify by writing the quotient in standard form, \(a + bi\).

Example 6. Divide.

1. \(\frac{6 + 5i}{3i}\)

2. \(\frac{2 - i}{4 + 3i}\)

6. Evaluating the powers of \(i\)

Steps for simplifying the powers of \(i\):

1. Divide the exponent of \(i\) by 4. Rewrite \(i^n\) as \((i^4)^q \cdot i^r\), where \(q\) is the quotient and \(r\) is the remainder of the division.
2. Simplify the product in Step 1 to \(i^r\) since \(i^4 = 1\)
Example 7. Simplify.

1. i^{27}
2. i^{38}
3. i^{-43}
4. i^{-98}

Example 8. (a) Find the reciprocal of the complex number. (b) Write each number in standard form.

1. $7i$
2. $-6 + 2i$

Example 9. Suppose that $f(x) = x^2 + x - 1$; find

1. $f(2i)$
2. $f(2 + i)$