Distribution and Abundance

I. Methods for studying Abundance & Distribution
II. Factors Limiting Abundance & Distribution
 A. Dispersal
 B. Behavior
 C. Abiotic Factors
 D. Biotic Factors

Definitions

Abundance = number of individuals
Density = number of individuals/unit area or volume
Population size = number of individuals in a population
Population = individuals of the same species in a specified area
Distribution = spatial pattern of abundance

I. Methods for studying Abundance & Distribution

A) Counts (census)

B) Estimates

Counts

• count all individuals in an area
 (example: human population census)
 — useful for large conspicuous organisms in small areas
 — seldom practical: too many organisms to count or too large an area to cover

Estimates

• sample subsets of the population and extrapolate to population

Estimates — sampling

Counts — sampling
Estimates

- desired characteristics of estimates:
 - unbiased (accurate)
 - repeatable
 - feasible

Estimates two types:

- **absolute** -- preferred
 - provides an estimate of the actual #, rate, etc.

- **relative** -- sometimes the only thing possible
 - does not provide actual estimate of parameter
 - estimates magnitude of parameter relative to something else
 (e.g., fish species X is twice as abundant as fish species Y, but the actual abundance of both is unknown)
 - must be "representative" to be useful
 (i.e., must have a consistent relationship with the true value of the parameter of interest)

Examples

- absolute estimates
 - transects
 - quadrats
 - mark-recapture

- relative estimates
 - trapping (e.g., light traps)
 - gill netting
 - calls (birds especially)
 - "artifacts" - burrows, molted exoskeletons, etc.
 - timed counts
 - % cover
 - amount of food eaten by organism of interest
 - surveys of fishermen

II. Factors Limiting Abundance & Distribution

1. Dispersal
2. Behavior
3. Abiotic Factors
4. Biotic Factors

Distribution = spatial pattern of abundance…

But ecologists who study distribution tend to study different things than those who study abundance

- Abundance – focus is on areas that are suitable for species of interest
- Distribution – focus is on what makes some areas unsuitable for species of interest

Factors that Limit Abundance & Distribution

1. **Dispersal** – can’t get there; or only in limited numbers
 - dispersion is especially important in marine systems
 - adults of marine marine species move little (are sedentary), but juveniles can disperse very long distances
 - prevailing ocean currents may limit or enhance dispersal
 - two important types of dispersal:
 - diffusion – gradual movement, spreading out from original area
 - jump dispersal – long distance dispersal at irregular intervals (e.g., colonization of islands)
Dispersal

Testing limitation of abundance by dispersal

- **Transplant experiment**
 - move organism outside of natural range
 - does it survive, reproduce, and spread?
 - example: three coral reef fishes (peacock grouper, bluestripe snapper, blacktail snapper)
 - abundant throughout tropical Pacific Ocean, but not in Hawaii
 - brought to Hawaii 1956-1961 to enhance fisheries
 - 3 species survived and reproduced and now have self-sustaining populations (7 other species did not)
 - interpretation: distribution limited by dispersal (1000’s of miles from any source population)

- **Unintentional transplant “experiments” — invasive species**
 - local marine examples:
 - Sargassum muticum & S. filicinum
 - Chinese mitten crab
 - isopod Sphaeroma quoyanum
 - yellowfin goby

Behavior — can get there but choose not to stay

= **Habitat Selection**

- Test by offering organisms different habitats
 - selection of habitats at time of settlement very important in marine organisms

- Habitat preferences may be:
 - genetic
 - learned

Example of habitat selection producing pattern of distribution:

Two coral reef fishes (Gutiérrez 1998)

- *Stegastes adustus*: only found on shallow reef crest
- *Stegastes planifrons*: found deeper on reef slope

Abiotic Factors

- temperature
- desiccation
- salinity
- turbulence
- light
- nutrients
- pH

Gutiérrez 1998

Stegastes adustus: juveniles only settle at crest – prefer dead coral

Stegastes planifrons: juveniles settle on slope – prefer live coral
3. Abiotic Factors

- Test by...
 - exposing organism to different regime (transplant)
 - alter the presumed limiting physical factor

 - is it the average or the extremes that matter?
 (e.g., average temperature or maximum temperature?)

4. Biotic Factors

- **Competition**: mussels outcompete barnacles & limit to upper intertidal
- **Predation**: lobsters at Catalina Island limit distribution of mussels
- **Food**: beach hoppers are only found with kelp wrack
- **Parasitism**: European green crabs are limited by parasitic castrators
- **Disease**: disease killed 99% of Diadema urchins in Caribbean
- **Mutualism/Commensalism**: anemonefishes found only with sea anemones

Often many factors act together to limit abundance and distribution