Seagrass Ecology

I. Importance
 - highly productive
 - nursery for wide range of species
 - sediment stabilization
 - water filtration (e.g., nutrient removal)
 - nutrient recycling

II. Distribution
 - worldwide in temperate and tropical seas
 (similar freshwater communities, too)
 - Zostera & Phyllospadix in **temperate** areas
 - greater diversity in **tropical** areas
 - soft-sediments (except surfgrasses)
 - mostly subtidal (occasionally intertidal)

III. Key Taxa
 - seagrasses (50-60 species)
 - flowering plants
 - clonal
 - epiphytic algae (hundreds of species)
 - animals (every major Phylum)
 - molluscs (conch, scallops)
 - crustaceans (shrimps, crabs)
 - fishes
 - birds (ducks, geese, wading birds)
 - reptiles (green sea turtles)
 - mammals (manatees, dugongs)
IV. Productivity – very high!

- up to **3 kg per m² year**, excluding production by algae!
 - one of most productive ecosystems on earth (similar to tropical rain forests, kelp forests, & coral reefs)
- rhizome production hasn’t been considered (often represents the majority of biomass)
- much of production is used as detritus (rather than being grazed by herbivores)
 - but is this natural? (we’ve killed most of the big grazers, e.g., turtles and manatees)

V. Biological Interactions

- herbivory
- predation
- facilitation
- invasive species
Herbivory

- natural roles of megaherbivores vs. smaller herbivores unclear
- role of herbivory itself in controlling seagrasses is unclear
 - bottom up or top down control?

Predation

- seagrass beds provide structural protection from predators for small animals (like kelp beds and coral reefs)
- densities inside seagrass beds often an order of magnitude or more higher than outside
- increased density of seagrass provides more protection
- importance of seagrass in mediating predation greater in tropics than temperate areas

Facilitation

- protection from predators
- provision of habitat
 - epiphytic algae
 - rhizophytic macroalgae

Invasive Species

- invasive seagrass Zostera japonica in Pacific Northwest - a "good" invasive?
 - only slight effect on distribution of native Zostera marina
 - positive effects on...
 -- species richness
 -- density of most native species
 -- foraging of water birds
Invasive Species

- invasive mussel *Musculista senhousia* in California
 - negative effect on native *Zostera marina*
 - reduces growth of rhizomes & shoots (where dense)
 - *Zostera* has negative effect on *Musculista*
 - where dense, reduces growth of *Musculista* (lower flow, less planktonic food)

VI. Human Impacts

- eutrophication & overfishing
- physical disturbance (e.g., boat scars)

Pattern:

- algal overgrowth kills seagrasses

Eutrophication or Overfishing?

Explanation 1:
- nutrient pollution (e.g., runoff, sewage) causes eutrophication
 - rapid growth of algae
- algae outcompete seagrasses

Explanation 2:
- overfishing of top predators releases smaller predators from their control
- small predators reduce abundance of small herbivores
- algae abundance increases
- algae outcompete seagrasses

Restoration: a solution for some human impacts

Zostera marina "plug" being transplanted to an area that had lost this species

Eelgrass restoration

- Batiquitos Lagoon, Carlsbad, CA
 - 0.25 acre transplanted in 1997/1998
 - 53 acres present in 2000, 39 acres in 2001