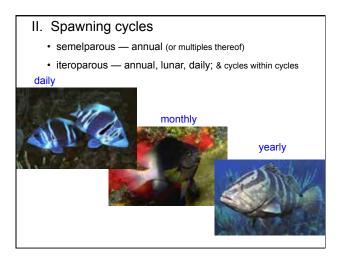
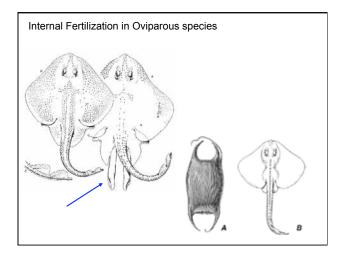
Reproduction in Fishes

- I. Lifetime spawning frequency
- II. Spawning cycles
- III. Modes of spawning
- IV. Sex change and mating systems


I. Lifetime spawning frequency


Semelparity — spawn once Why? Iteroparity — spawn multiple times


Tradeoff: number vs. size of eggs/offspring Number of offspring (eggs or young) and degree of parental car				
	Species	Relative Egg or Offspring Size	Mean # of Eggs or Offspring	Degree of Parental Care
	Mola mola	very small	28,000,000	none, free floating pelagic eggs
	cod	very small	9,000,000	
	haddock	very small	2,000,000	
:	sturgeon	medium	200,000	eggs buried, no other care
:	salmon	medium	5,000	
:	sculpin	medium	140	high
:	stickleback	medium	60	
	medaka	medium	30	
:	sand shark	very large	1-2	extreme: uterus w/ cannibalism

Oviparity

- external fertilization gametes shed into water
 - most common mode
 - ancestral condition
 - simple
 - small, but numerous eggs
- internal fertilization eggs fertilized internally, but later released into water
 - uncommon
 - many elasmobranchs
 - often very large eggs in cases

Final Night of Kelp Bass Spawning

<u>Ovoviviparity</u>

internal fertilization — eggs fertilized internally & hatch internally, but no direct maternal nourishment

advantage

 young are generally larger and more advanced

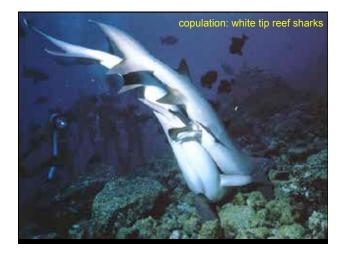
disadvantages

- low dispersal of offspring
- few offspring produced
- if mother dies while pregnant, offspring die, too

examples:

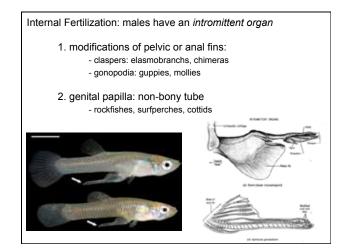
- most sharks and rays
- coelacanth
- rockfishes

<u>Viviparity</u>


- internal fertilization & direct maternal nourishment
 - ovarian fluids
 - placenta (some sharks)

<u>advantage</u>

- young are very large and advanced


disadvantages

- same as for ovoviviparity
- energetic cost to mother


Viviparity

examples:

- requiem sharks (family Carcharhinidae) & hammerheads
- guppies & other freshwater livebearers
- marine surfperches

Return to Oviparity:

Modes of Oviparity

- 1) broadcast spawning
- 2) demersal, non-guarding
- 3) demersal, guarding
- 4) brooders

1) Broadcast Spawning

- most marine fishes
- eggs & sperm shed into water column & drift away
- larval & juvenile/adult habitat completely different (bipartite life cycle)

1) Broadcast Spawning

advantages

- zero energy expenditure after gametes released
- best chance of long distance dispersal
- · disadvantages
 - very low survival of offspring
 - caused by:
 - * lack of parental protection
 - * small larval size
 - * inability to find or return to appropriate adult habitat

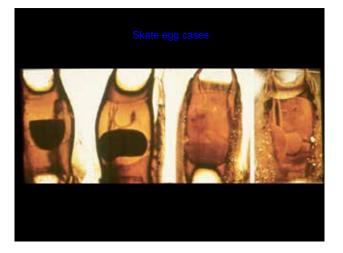
- 1) Broadcast Spawning: Timing & Location
 - maximize transport of eggs & larvae away from the reef
 - spawn during outgoing tide
 - downcurrent side of reef
 - upward spawning rush to place gametes high in water column
 - · two hypotheses:
 - minimize exposure to predators
 - maximize dispersal ("spread the risk")

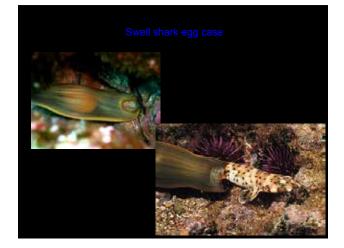
2) Demersal Non-Guarding

- · hiders and non-hiders
- eggs usually placed or glued on bottom
- common in freshwater fishes (minnows), but not in marine fishes

advantages

- zero energy expenditure after gametes released
- eggs may be better protected
- greater control over where offspring end up


disadvantages


- still quite low survival of offspring
- high risk of loosing entire batch of eggs
- lower dispersal
- nest sites can become limited

3) Demersal Guarding

- common among reef fishes (e.g., gobies, damselfish, triggerfish)
- · males usually guard

3) Demersal Guarding

advantages

- increased survival due to parental protection
 increased survival due to parental care

 - (cleaning and oxygenation)

disadvantages

- high cost to parent(s): energy and time
 increased risk of mortality in parent(s)
- nest sites may become limited

4) Brooding

- young brooded in:
 mouths (males of cardinalfishes, jawfishes, catfishes; female cichlids)
 - on body (some male pipefishes)
 pouches (male seahorses & some pipefishe
- offspring usually (but not always e.g., cardinalfishes) well developed when released

4) Brooding

advantages

- increased survival due to parental protection
- increased survival due to parental care (cleaning and oxygenation)
- no need to find or maintain a nest

disadvantages

- high cost to parent(s): energy and time
- · if parent dies, so do offspring
- low dispersal

IV. Sex change

- among vertebrates, found only in fishes

Sexual Strategies

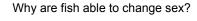
• gonochorism — separate sexes, no sex change

- advantage: allows sexual specialization

- disadvantage: may not maximize fitness

hermaphroditism

- simultaneous


- sequential

protogynous = female then male *protandrous* = male then female

- · simple gonads and reproductive tracts
- · sex chromosomes are similar or identical

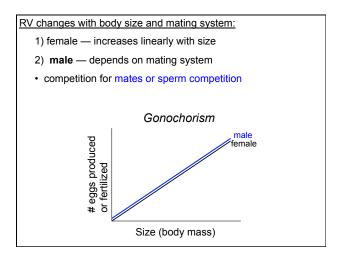
- Why do fish change sex?
 - to maximize *fitness* by maximizing lifetime *reproductive output*

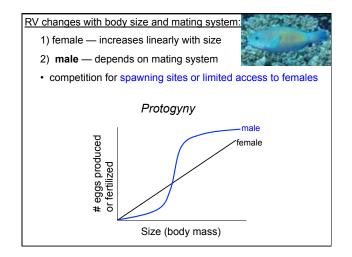
Why do fish change sex?

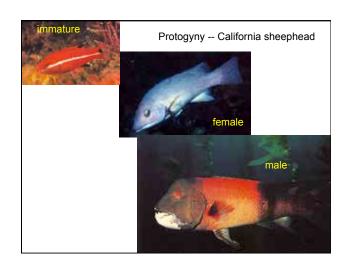
Size advantage model - predicts sex change if your current reproductive value (RV) is less than what it would be if you were the opposite sex

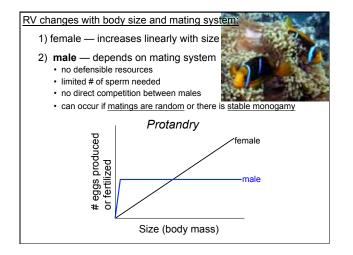
RV = (expected fecundity at a given size)

(probability of surviving to that size)

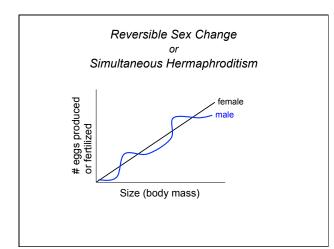

Why would RV differ between the sexes?

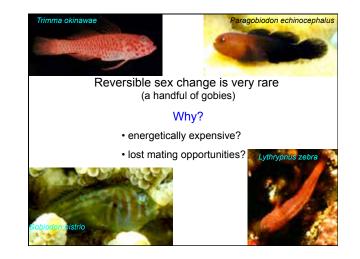

1) relative cost of gametes

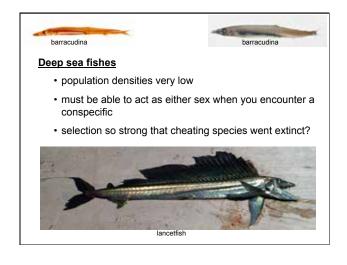

- · sperm are cheap, eggs expensive
- therefore, females usually limited by ability to produce eggs or hold them or embryos in the body (69 human offspring; Russian woman, 1700's)
- males usually limited by access to females
 (850+ children: Emperor of Morocco 1600-1700's)


2) mating system...

- monogamy one partner
- polygamy multiple partners
 - polygyny many females, one male
 polyandry many males, one female







Simultaneous hermaphroditism seems like best strategy • Why is it so rare? Cheating Simultaneous hermaphroditism is common in two groups of fishes:

- deep sea fishes
- small serranids

Small serranids (Hypoplectrus, Serranus)

- egg trading allows cheaters to be detected and punished
- cheaters abandoned
- abandoned cheaters lose mating opportunities while searching for new mate

