Lecture \#7 Chapter 7: Estimates and sample sizes

In this chapter, we will learn an important technique of statistical inference to use sample statistics to estimate the value of an unknown population parameter.

7-2 Estimating a population proportion

Recall: A point estimate is a single value estimate for a population parameter. The most unbiased point estimate of the population proportion is the sample proportion, $\widehat{\boldsymbol{p}}$.

An interval estimate (confidence interval) is an interval, or range of values, used to estimate a population parameter. For example $0.476<p<0.544$

The level of confidence (1- $\boldsymbol{\alpha}$) is the probability that the interval estimate contains the population parameter. For example, we are 90% confident that the above interval contains the true value of p.
"We are 90% confident" means that if we were to select many different samples of size n and construct the confidence interval, 90% of them actually contain the value of the population proportion p .

We know from the central limit theorem that when $n>30$, the sampling distribution of sample proportion is a normal distribution. The level of confidence (1- α) is the area under the standard normal curve between the critical values $z_{\alpha / 2}$ and $z_{\alpha / 2}$.

Critical values are values that separate sample statistics that are probable from sample statistics that are improbable, or unusual. (1- α) is the percent of the area under the normal curve between $-z_{\alpha / 2}$ and $z_{\alpha / 2}$.

For example, if $(\mathbf{1 - \alpha})=\mathbf{0 . 9 0}$, then $\boldsymbol{\alpha}=\mathbf{0 . 1 0}$ and $\boldsymbol{\alpha} / \mathbf{2}=\mathbf{0 . 0 5}$. 5% of the area lies to the left of $\quad-z_{\alpha / 2}=-1.645$ and 5% lies to the right of $z_{\alpha / 2}=1.645$.

Example 1: Find the critical value $z_{\alpha / 2}$ corresponding to the given degree of confidence. a) 99% b) 97%

The margin of error, denoted by \mathbf{E}, is the greatest possible distance between the observed sample proportion $\widehat{\boldsymbol{p}}$ and the true value of the population proportion p . $E=z_{\alpha / 2} \cdot \sigma_{\hat{p}}=z_{\alpha / 2} \cdot \sqrt{\frac{\hat{p} \cdot \hat{q}}{n}}$

Thus a (1- $\boldsymbol{\alpha}$) confidence interval for the population proportion is $\widehat{\boldsymbol{p}}-\mathrm{E}<\mathrm{p}<\widehat{\boldsymbol{p}}+\mathrm{E}$.
Round-off rule for confidence interval estimate of p : Round the confidence interval limits for p to 3 significant digits.

Guide line for constructing a confidence interval for a population proportion:

1. Identify the sample statistics n and x.
2. Find the point estimate $\widehat{\boldsymbol{p}}=\frac{x}{n}$
3. Verify that the sampling distribution of $\widehat{\boldsymbol{p}}$ can be approximated by the normal distribution $n \widehat{\boldsymbol{p}} \geq 5, n \widehat{q} \geq 5$.
4. Find the critical value $z_{\alpha / 2}$ that corresponds to the given level of confidence (1- α).
5. Find the margin of error E. $E=z_{\alpha / 2} \cdot \sigma_{\hat{p}}=z_{\alpha / 2} \cdot \sqrt{\frac{\hat{p} \cdot \hat{q}}{n}}$
6. Find the left and right end points and form the confidence interval.

$$
\widehat{\boldsymbol{p}}-\mathrm{E}<\mathrm{p}<\widehat{\boldsymbol{p}}+\mathrm{E}
$$

Example 2: 829 adult were surveyed in one city, and 51% of them are opposed to the use of the photo-cop for issuing traffic ticket. A) Find the best point estimate of the proportion of all adults in that city opposed to photo-cop use? B) Construct a 95% confidence interval for the proportion of adults who opposed to photo-cop use? C) base on the results, can we safely conclude that the majority of adult oppose use of the photo-cop?

Determining Sample size:

Note: $\mathrm{E}=z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p} \cdot \hat{q}}{n}}$ Solve this formula for $\mathrm{n}, \quad n=\frac{\left(z \frac{\alpha}{2}\right)^{2} \cdot \hat{p} \cdot \hat{q}}{E^{x}}$ when \widehat{p} is known. $n=\frac{\left(z \frac{a}{2}\right)^{2} \cdot 0.25}{E^{2}}$ when \widehat{p} is not known.

Round-off rule for sample size \mathbf{n} : when necessary, round up to obtain the next whole number.

Example 3: a sociologist wishes to estimate the percentage of the U.S population living in poverty. What size sample should be obtained if she whishes the estimate to be within 2 percentage points with 99% confidence a) if she uses the 2003 estimate of 12.7% obtained from the American Community Survey. b) If she no prior information suggesting a possible value of p.

Finding the point estimate and E form a confidence interval:

If we already know the confidence interval limits from either a journal article, or ti might have been generated using software or a calculator, then the sample proportion $\widehat{\boldsymbol{p}}$ and the margin of error E can found as follows:

$$
\begin{aligned}
& \widehat{\boldsymbol{p}}=\frac{\text { (upper confidence limit) })+(\text { lower confidence limit })}{2}, \\
& E=\frac{(\text { upper confidence limit })-(\text { lower confidence limit })}{2}
\end{aligned}
$$

Try it yourself: \#29 on section 7-2

7-3 and 7-4 Estimating a population mean: I) σ is known II) is not known

In this two section, you will learn how to sue sample statistics to make an estimate of the population parameter μ.

Guide line for finding a confidence interval for population mean ($n>30$ or the population is normally distributed.)

1. Find the sample statistics n and \bar{x}.
2. Specify σ if known. Otherwise, if $\mathrm{n}>30$, find the sample standard deviation s and use it as an estimate for $\sigma . \quad s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}$
3. Find the critical value $z_{\frac{\alpha}{2}}$ that corresponds to the given level of confidence.
4. Find the margin of error E. $E=z \frac{\alpha}{2} \cdot \frac{\sigma}{n}$
5. Form the confidence interval.

Example 4: Starting salaries of college graduates who have taken a statistic course: $\mathrm{n}=28, \bar{x}=\$ 45,678$, the population is normally distributed and $\sigma=\$ 9900$. Find a 95% confidence interval for estimating the population mean.

Round-off rule for confidence intervals used to estimate μ :
a) If the original set of data in known, round the confidence interval limits to one more decimal place than is used for the original set of data.
b) When the original set of data is unknown, round the confidence interval limits to the same number of decimal places used for the sample mean.

Example 5: A sample of 54 bears has a mean weight of 182.9 lb . Assuming that σ is known to be $\quad 121.8 \mathrm{lb}$, find a 99% confidence interval estimate of the mean of the population of all such bear weights.

Sample size for estimating mean μ :

Given a degree of confidence and a margin of error E , the minimum sample size, n , needed to estimate the population mean μ is $n=\left(\frac{\sigma \cdot \frac{z a}{2}}{E}\right)^{2}$

Example 6: an economist wants to estimate the mean income for the first year of work for college graduates who have taken a statistic course. How many such incomes must be found if we want to be 95% confident that the sample mean is
within $\$ 500$ of the true population mean? Assume that a previous study has revealed that for such incomes, $\sigma=\$ 6250$.

Round-off rule for sample size \mathbf{n} : when necessary, round up to obtain the next whole number.

Estimating a population mean: σ is not known

In many real-life situations, the population standard deviation is unknown. If the random variable is normally distributed (or approximately normally distributed), then we will use a t-distribution.

Def: If the distribution of a random variable x is approximately normal, then $\boldsymbol{t}=\frac{\overline{\bar{c}}-\mu}{\frac{\nu}{\sqrt{n}}}$ follows a $\quad \mathrm{t}$-distribution.

Critical values of t are denoted by $t_{\alpha / 2}$. Several properties of the t-distribution are as follows:

1. The t-distribution is bell-shaped and symmetric about the mean.
2. The t-distribution is a family of curves, each determined by a parameter called the degrees of freedom. The degrees of freedom are the number of free choices left after a sample statistic such as \bar{x} is calculated. Degrees of freedom $=\mathrm{n}-1$
3. The total area under a t-curve is 1 or 100%.
4. The mean, median, and mode of the t-distribution are equal to zero.
5. The standard deviation of t distribution varies with the sample size, but it is greater than 1 (unlike the standard normal distribution, which has standard deviation of 1).
6. As the sample size n gets larger, the t -distribution gets closer to the standard normal distribution.

A value of $t_{\alpha / 2}$ can be found in table A-3 by locating the appropriate number of degrees of freedom in the left column and proceeding across the
corresponding row until reaching the number directly below the applicable value of α for area of two tails.

Example 7: find the critical value, $t_{\alpha / 2}$ for a 95% confidence when the sample size is 15 .

Example 8: find the critical value, $t_{\alpha / 2}$ for a 90% confidence when the sample size is 22 .

Guidelines: Constructing a confidence interval for μ (with σ is unknown)
(The population appears to be normally distributed or $n>30$)

1. Find the sample statistics n and \bar{x} and s.

Sample standard deviation: $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
2. Identify the degrees of freedom, the level of confidence 1- α, and the critical value $t_{\alpha / 2}$.
3. Find the margin of error E. $\quad E=\operatorname{ta} \cdot \frac{s}{2} \cdot \frac{s}{\sqrt{n}}$
4. Form the confidence interval .

Example 9: You randomly select 16 restaurants and measure the temperature of the coffee sold at each. The sample mean temperature is $162^{\circ} \mathrm{F}$ with a sample standard deviation of $10^{\circ} \mathrm{F}$. Find the 95% confidence interval for the mean temperature. Assume the temperatures are approximately normally distributed.

Example 10: You randomly select 20 mortgage institutions and determine the current mortgage interest rate at each. The sample mean rate is 6.93% with a sample standard deviation of 0.42%. Find the 99% confidence interval for the mean mortgage interest rate. Assume the interest rates are approximately normally distributed.

Choosing the Appropriate Distribution:

Example 11: determine whether the margin of error E should be calculated using a critical value from the normal distribution, a critical value of from a tdistribution, or neither.
a) $\mathrm{n}=150, \bar{x}=100, \mathrm{~s}=15$, and the population has a skewed distribution.
b) $n=8, \bar{x}=100, s=5$, and the population has a normal distribution.
c) $\mathrm{n}=8, \bar{x}=100, \mathrm{~s}=15$, and the population has a very skewed distribution
d) $\mathrm{n}=150, \bar{x}=100, \sigma=15$, and the distribution skewed
e) $\mathrm{n}=8, \bar{x}=100, \sigma=15$, and the distribution is extremely skewed.

