Carbohydrates & Exercise

FCS 608 Fall 2010

Presented by: Armen Hovsepian Brian Mitchell Sandra Salute Vagram Sulukyan

History

- India, circa 300 A.D.
 - Sanskrit
 - "su" = sweet
 - "gar" = sand
- Egypt, circa 640 A.D.
 - "Glucose"
- Int'l Union of Chemistry, 1938
 - $\ ^{\square }\ ^{\boldsymbol{\circ }}\mathbf{Carbohydrates}^{\boldsymbol{\circ }}$

 $\label{thm:common} \begin{tabular}{ll} Title\ IMG\ source: http://www.consumeraffairs.com/images02/wheat.png \\ Source: http://acnefriend.com/images/glycolic-acid-acne-sugarcane.jpg \\ \end{tabular}$

Biochemistry

- CHO = primary source of energy
 - During exercise and physical activity
- Stored CHO in form of Glycogen
 - Liver
 - Muscle tissue
- Digestion
 - Enzymatic breakdown in small intestine
 - Complex carbohydrates are found as long chains of glucose.

Biochemistry

- Complex CHO
 - long chains of glucose
 - aka polysaccharides (amylose & amylopectin)
- Simple CHO
 - Mono- or disaccharides
 - One or two sugar molecules

Figure 1. Simple and Complex Carbohydrates Source: http://jennifer.nutritiontransition.co.uk/images/carbohydratediagram.jpg

Biochemistry

- Absorption
 - □ Small intestine → Liver → bloodstream
 - "checkpoint" all CHO \rightarrow glucose (blood sugar)
- CHO used for a variety of needs.
 - Maintaining normal blood glucose
 - Stored as glycogen for later use
 - For immediate energy
 - · Krebs cycle → ATP

N N N Adenine

O O O O O O O O O O O

Figure 3. ATP molecule Source: http://www.benbest.com/cryonics/ATP.gif

Glycemic Index

- + Glycemic Load
- Glycemic Index [GI]
 - how quickly CHO affects blood glucose
 - 0-100 rating
 - $\ ^{\square}$ Based on 50g of CHO food item
 - Can be categorized as LOW/MED/HIGH
- Various factors in digestibility/speed
 - Other nutrients
 - How many Servings?
 - · This is known as the Glycemic Load (GL)

Some examples of glycemic index	
Corn Flakes	112
All Bran	55
Oatmeal	70
Whole wheat bread	50-70
Pizza	85
Waffles	110
Spaghetti	50-60
Rice	110-120
Potato, cooked	80-85
Potato, mashed	104
Milk	40-50
Cola	97

Figure 5. Various food items and respective GI rating. Source: http://www.medbio.info/Horn/Time%201-2/glycemic_index.htm

Recommended Intake

- Low CHO diets result in low glycogen
 - Decreased performance time
- Non-athlete recommendation
 - 4-5 g CHO/kg (body weight)
- General athlete
 - □ 5-7 g CHO/kg
- Increased performance
 - □ 7-10 g CHO/kg
- 132lb athlete →
 - · 300-420g daily
 - · 420-600g competition

Pre-Exercise Meal

- Preexisting glycogen & fat
 - fuel during a workout
- Pre-exercise meal important for an athlete
 - $\ ^{\square}$ Especially if there is a lack of intake
 - Provides energy (esp. when workout lasts 1hr+)
 - Satiation during a workout
 - Supply muscle cells w/energy by increasing blood glucose
 - All help to increase **performance**.

Pre-Exercise Meal

- Guidelines
 - Consume 1-4 hr prior to exercise
 - Aim for 1 4.5 g CHO/kg
 - Consume 2nd meal/snack 1hr prior to workout
 - Aim for ~1g CHO/kg
- Athletes encouraged to experiment with LOW/ MED/HIGH GI foods

Post-Exercise Meal + Refueling Window

- Performance can be impaired if CHO stores are not replenished.
 - Athletes <u>strongly suggested</u> to come prepared with a post exercise carbohydrate snack.
- Within ~30 min after workout
 - Consume 1.5g CHO/kg
 - Ex. Fruit, Starch (potato/bread), CHO drink/gel
- 2hr post workout
 - □ consume another 1.5g CHO/kg

Excesses

- In general
 - Weight gain
 - Hyperglycemia (Type II Diabetes)
 - Increase in triglycerides
 - Increases risk of cavities
- On athletic performance
 - GI disturbances
 - Increased gastric dumping
 - Re-directed blood flow to stomach

Deficiencies

- In general
 - Decreased energy production
 - Can lead to hypoglycemia, feeling lethargic and even syncope (fainting).
 - Decreased ability to concentrate
- On athletic performance
 - Increase in gluconeogenesis
 - · Break down of protein for energy
 - · Muscle wasting
 - Hypoglycemia, fatigue which leads to....
 - LOSING!!!

Controversy

- "Carbohydrates make me fat!"
- Carbs = fat
 - NOT TRUE!
 - Excess calorie consumption.
 - · Lack of knowledge about carbohydrate.
 - · Can't burn fat without carbohydrate.

Controversy

- "Lower Your Carbohydrate Consumption to Increase Muscle Mass"
- Article by Chris Aceto in M & F Magazine.
 - Cycle CHO day by day
 - Never over 150g
 - Do you need CHO to build muscle?
 - What is to be used for energy to lift weights?

Current Research

- 1. CHO Supplements & Performance (Sandra)
- 2. GI & GL (Armen)
- 3. CHO Ingestion & Soccer Performance (Vaughn)
- 4. Rinsing CHO solution & Running (Brian)
- 5. Placebo Effect (Sandra)

Article 1

- Carbohydrate-supplement form and exercise performance.
- Campbell, Prince, Braun, Applegate, & Casazza
- IJSNEM 2008

Campbell, C., Prince, D., Braun, M., Applegate, E., & Casazza, G. A. (2008). Carbohydrate-supplement form and exercise performance. *International Journal of Sport Nutrition and Exercise Metabolism*, 18, 179-190.

- Purpose
 - 3 different supplement forms of CHO
 - Difference in cycling performance?
- Materials
 - 16 cyclists and tri-athletes
 - CHO Sport Drink
 - · CHO Gel
 - · CHO Sports Beans
 - H₂O

- Methods
 - Standardized meal 1-2 hours prior to each trial
 - 10 min warm-up
 - 80 min ride (75% max VO₂)
 - 10-km time trial
 - 4 Experimental trials
 - Randomly assigned CHO supplements (0.6 g)
 - Consumption before, during, and after

- Results
 - Maintenance of blood glucose levels
 - Improved cycling time & performance for all CHO supplements in comparison to H₂O
 - Sports beans increased power output during 10km time trial

- Discussion
 - $\ ^{\square}$ Sports Beans inc. during 10-km could be due to:
 - 1. Delayed breakdown & absorption of outer coating allowing availability during time trial
 - 2. Error in using device that measures power output

- Prior Research
 - Several studies proven CHO sports drinks improve exercise performance
 - No prior research on effectiveness of gels or jelly beans on exercise performance

- Implications
 - Form of CHO supplement does not influence the beneficial effects of supplement
 - Variation provides athletes with convenient, portable, easy to digest options

- Limitations
 - Small sample size
 - Sponsored by Jelly Belly Company (bias)
 - Inaccurate device measurement (power output)

Article 2

- Influence of mouth rinsing a carbohydrate solution on 1-h running performance.
- Rollo, Cole, Miller & Williams
- Medicine & Science in Sports & Exercise 2010

Rollo, I., Cole, M., Miller, R., Williams, C. (2010). Influence of mouth rinsing a carbohydrate solution on 1-h running performance. *Medicine & Science in Sports & Exercise*, 42, 798-804.

- Purpose
 - Determine efficiency of mouth rinsing CHO solution on runners during 1hr run.
- Materials & Methods
 - 10 endurance trained male participants
 - Automated treadmill (changes speed w/o manual input)
 - 25ml 6.4% CHO solution
 - º 25ml Placebo
 - 13 hour fast
 - 1hr run
 - Finger prick blood samples

- Results
 - 6.4% CHO group solution ran 211 meters more than placebo
 - No change in blood glucose levels
 - No plasma insulin levels
 - · Why?

- Discussion
 - Increased performance when runners rinsed w/6.4% CHO solution
 - 1. Simple CHO was shown to have a positive effect on endurance running by swishing a sample in mouth.
 - 2. Blood glucose and plasma insulin levels were not effected.
 - Could be a good alternative to those who suffer from GI discomfort.

- Prior Research
 - Previous research has shown similar effects.
 - Increased performance without impact on blood glucose or plasma insulin levels
 - Same results seen in a study done on cyclists.

- Implications
 - Tests show that performance can be increased in endurance sports by CHO solutions, even without ingestion.
 - Research reinforces that CHO plays a vital roll in energy production for aerobic and anaerobic activities.

- Limitations
 - $\ ^{\square}$ Small sample size
 - Consisted of men only
 - Participants were trained endurance athletes
 - Test was only one hour
 - So what about events that last longer?
 - · Same beneficial effects?

- The Influence of Carbohydrate-Electrolyte Ingestion on Soccer Skill Performance
- Ajmol, Williams, Nicholas, & Foskett
- Medicine & Science In Sports & Exercise 2007

Ajmol, A., Williams, C., Nicholas, C. W., & Foskett, A. (2007). The Influence of Carbohydrate-Electrolyte Ingestion on Soccer Skill Performance. *Medicine & Science In Sports & Exercise*, 39(11), 1969-1976.

- Purpose
 - To determine the outcome of consuming CHOelectrolyte solution in university soccer players with depleted glycogen levels.
- Materials & Methods
 - 2 main trials, 16 university soccer players
 - CHO-electrolyte & placebo solution
 - Shooting + passing recorded prior to trial
 - 30 min cycling (70% VO_{2max})
 - (3x) 50 sec sprints
 - 45 min cycling (70% VO_{2max})
 - Low CHO meal was given after reducing glycogen stores.

- Materials & Methods
 - 1st trial
 - · Ingested CHO solution
 - 2nd trial
 - Ingested placebo while performing skill tests.
 - Athletes performed
 - (6x) 15 min block tests
 - 3 min rest periods to ingest solution
 - 10-12 cycles of walking/running (95% VO_{2max})
 - Jogging (55% VO_{2max})
 - · followed by sprint

- Materials & Methods
 - After the exercises
 - 2 min rest
 - Then passing & shooting tests
 - Comparison was measured by:
 - difference in their skill display
 - $\boldsymbol{\cdot}$ body mass pre- and post-exercise
 - $\boldsymbol{\cdot}$ blood analysis for glucose, lactate, and FFA

- Results
 - Shooting test was better in the CHO trial
 - Passing test did not show significant difference
 - Sprint was faster in CHO test
 - Blood analysis test confirmed more plasma glucose in CHO trial

- Discussion
 - After prolonged exercise, CHO solution maintained soccer shooting skills, but made no change with shooting skills compared to placebo trials.
 - 1. For shooting, the body requires more energy and strength to deliver an accurate high velocity shot.
 - 2. For passing, the body may deliver a pass while reaching fatigue.

- Prior Research
 - Other research indicates that fluid intake maintains glycogen levels efficiently.
 - Numerous research specifies that an intake of a carbohydrate solution maintains plasma glucose levels; thus, prolonging the use and depletion of body glycogen.

- Implications
 - Consumption of CHO-electrolyte solutions while exercising facilitates athletic performance and skilldisplay to those with compromised glycogen stores.
- Limitations
 - Small sample size.
 - Limited to only 3 specific soccer skill performance tests.
 - A better analysis will be made with tests applied on a diversity of skilled based performances from different sports.

- Effect of Preexercise Meals With Different Glycemic Indices and Loads on Metabolic Responses and Endurance Running
- Chen, Wong, Wong, Lam, Huang, Siu
- IJSNEM 2008

Chen, Y. J., Wong S. H., Wong C. K., Lam, C. W., Huang, Y. J., & Siu, P.M. (2008). Effect of Preexercise Meals With Different Glycemic Indices and Loads on Metabolic Responses and Endurance Running. *International Journal of Sport Nutrition and Exercise Metabolism*, 18, 281-300.

- Purpose
 - To examine the effect of ingesting 3 isocaloric meals with different GI and GL 2 hr before exercise on metabolic responses and endurance running performance
- Materials & Methods
 - 8 male runners
 - 3 randomized trials
 - Separated by at least 7 days
 - $^{\circ}$ 1hr run @ 70% $\mathrm{VO}_{\mathrm{2max}}$ +10km performance run

- Materials & Methods
 - 3 isocaloric meals [CHO%, GI, GL]
 - 1. High GI/High GL [65%, 79, 82]
 - 2. Low GI/Low GL [65%, 40, 42]
 - 3. High GI/Low GL [36%, 78, 44]
 - Blood samples to determine glucose conc.
 - Air samples examined at 20 min. intervals
 - Total CHO & FFO calculated via stoichiometry

- Results
 - Low-GL induce smaller changes in metabolism during exercise than High-GL
 - Higher rates of FFO found in low-GI meals
- Discussion
 - High-GI meals induced an insulin response which was found to decrease FFO
 - Crucial for athletes to know:
 - · relationship of different types of dietary CHO
 - respective GI/GL
 - benefits in sustaining energy during competition

- Prior Research
 - Findings on Low-GI & FFO relationship are supported by prior research articles.
 - Effects of insulin and FFO observed prior.
- Implications
 - "Ingesting a low-GI high-CHO meal, with reduced postprandial glycemia and insulinemia, might provide the CHO required during subsequent exercise without depressing fat oxidation..."

- Limitations
 - Factors of control
 - · Timing of food ingestion
 - · Quantity of CHO ingested
 - Type of exercise
 - · Performance measurement method
 - Absence of data on preexisting glycogen
 - Results attributed to basal glycogen content or glucose/FFO metabolism during experiment

- No placebo effect from carbohydrate intake during prolonged exercise.
- Hulston & Jeukendrup
- IJSNEM 2009

Hulston, C. J., & Jeukendrup, A. E. (2009). No placebo effect from carbohydrate intake during prolonged exercise. *International Journal of Sport Nutrition and Exercise Metabolism*, 19, 275-284.

- Purpose
 - To examine the likelihood of a placebo effect on exercise performance after participants ingested a CHO solution before exercise.
- Materials & Methods
 - Random double blind cross-over study
 - □ 10 male cyclists
 - $\ ^{\ }$ Participants were informed CHO vs. $\rm H_{2}O$

- Materials & Methods
 - 600ml of either solution:
 - 1. Only H₂O
 - 2. 6% CHO + electrolyte solution
 - 3. Colored & flavored H₂O
 - Given every 15min and at start of 120 min trial
 - Participants completed a 60 minute time trial as fast as they could immediately after they finished.

- Results
 - No placebo effect was observed for participants who believed they consumed carbohydrate solution
 - The participants who consumed the CHO solution increased their cycling performance for the Time Trial (TT) by 10.6%.

- Discussion
 - CHO ingestion improved performance compared to Only H₂O and Colored-flavored H₂O.
 - Mechanism by which CHO improve performance were confirmed in this study.

- Prior Research
 - In contrast to previous studies:
 - there was no placebo effect
 - Participants showed an improvement in performance when they believed they ingested CHO
- Implications
 - "believing that one has received CHO does not improve performance during prolonged exercise"

- Limitations
 - Small sample size
 - Reliability of performance testing:
 - · Participants might pick up on subtle cues
 - Uncertainty of trial order can alter performance
 - One of the references listed in the reference section was not cited in the text (title: Validity, reliability, and sensitivity of measures of sporting performance)

Take Home Message

CHO have a positive influence on exercise performance.

The Human Ecological Theory

Important for educator:

- 1. Understand why a person has developed such beliefs
- 2. To try to help them modify or develop different beliefs

IMG Source: http://www.sasked.gov.sk.ca/branches/psych_portal/images/ecological_model1.jpg

The Human Ecological Theory

- CHO topics for an Educator:
 - RDA for activity level (training, competition, & recovery phases)
 - Pre-exercise meal
 - Consumption during practices and games
 - Post-exercise refueling window
 - Complex versus simple
 - Glycemic index
- Constantly reassure athlete that you want to help improve their athletic performance so they believe that your goal is their goal

Conclusion

- Humans have relied on grains historically
- CHO remain the main staple for all
- Research confirms CHO are ideal energy source
- Educators: debunk myths & pass the grains!

